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1. Assumption leading to the measurement model

In the work of Ottosson et al. 2010 (Ottosson et al., 2010), the PE signal is defined

as a function of electron kinetic energy, but it does not include the dependence of

the parameters which is left implicit. However, in this work, we need this important

information in order to understand where discrepancies may arise and where approx-

imations may come from. In the work of Dupuy et al. 2021 (Dupuy et al., 2021), the

PE signal is modeled with integration over the volume of the sample of the product

of the density ρ and the exponential attenuation. The beam profile is left out of the

volume integral which implies some (left unknown) assumptions. However, the photon

flux is a quantity that varies over the integration volume because the beam profile

is not flat (Fedoseenko et al., 2003; Kachel, 2016) Also, the amplitude of the flux is

attenuated in the sample. Though, the attenuation of the photon flux can be neglected
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over the thickness (less than 100 µm) of the sample, e.g. the linear attenuation length

of 1 [keV] X-ray in water is around 2.5 mm (Berger, 1998). Therefore, neglecting the

attenuation of the photon flux in the sample is a weak assumption for thin samples

such as LJ. The variation in space of the differential cross-section density σχ(ν,Ke, θ)

in the sample is also left out because the analyzer is sufficiently far from the sam-

ple (e.g. a few radii away) that the measurement angle is constant over the sample.

In order to account for the spatial approximations in the photon flux, the alignment

parameter α [m−2] is introduced as a multiplicative factor (Ozon et al., 2023; Dupuy

et al., 2021). The alignment parameter depends on the acquisition setup and should

be estimated for every acquisition, e.g. from raw experimental data.

Our presented model accounts for the spatial and spectral variability of the model

parameters, i.e. the photoionization differential cross-section density and the photon

flux density. Hence, the electron flux J [electron s−1] reaching the aperture of the

measurement device (not including the device itself) is given by the summation of the

contribution of all photon energy over the spectral domain Ων , the contribution over

the area where the photon beam extends on the sample, and the angle domain Ωθ

that cover the aperture of the kinetic analyzer. We write the photo-electron flux as it

was modeled in (Ozon et al., 2023)

Jkχ(Ke) =

∫
ΩV

∫
Ων

∫
Ωθ

σχ(ν,Ke, θ)fk(ν,M)ρ(M)e
−
∫ τmax

0

ρtot(Ms(τ))
ρ0λe(Ke)

dτ
dθdνdV (1)

where fk(ν,M) [photon m−2 eV−1] is the photon spatial and spectral density for the

central frequency νk, and ρ is the concentration expressed in number of molecules

per unit volume [m−3] and represents the concentration of an orbital, e.g. χ =C1s.

The concentration ρtot [m−3] is the molecular concentration of all the species in the

sample, e.g. ρtot = ρwater + ρSDS for an aqueous solution with SDS. The distance∫ τmax
0

ρtot(Ms(τ))
ρ0

dτ is the summation of the relative concentration ρtot

ρ0
along the path of

the emitted electrons from the emission point M = (xM , yM , zM ) along the parametric
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curve Ms leading to the surface of the liquid in direction of the analyzer located in

P = (x0, y0, z0) at a distance τmax =
√

(x0 − xM )2 + (y0 − yM )2 + (z0 − zM )2 [m].

The emitted photoelectrons are assumed to be traveling in straight lines, and the

attenuation length characterizes the losses by elastic or inelastic interaction with the

sample. In this formulation, it is implicitly assumed that the scattering properties

are uniform across the sample, and that outside the sample (where ρtot = 0) the

photoelectrons do not undergo scattering events. The integration domain ΩV covers

the sample and dV is the infinitesimal volume around M . Considering any point M

in the liquid and any point P outside of the liquid, the straight line joining M to P

can be parameterized as:

Ms(s) =

x(s)
y(s)
z(s)

 =

s sinω cosβ + xM
s sinβ + yM

s cosω cosβ + zM

 =

s
x0−xM
τmax

+ xM
sy0−yM
τmax

+ yM
s z0−zMτmax

+ zM

 (2)

where the direction angles ω and β are depicted in fig. (2) and s [m] is the parameter

of the curve that represents the signed distance from point M . The angle ω is between

the z-axis and the projection MP onto the plane zOx, and β is taken as the angle

between the plane zOx and MP . Note that the concentrations ρ and ρtot in the model

are not the same, one represents the density of all species ρtot (overwhelmingly water

for aqueous solutions) and the other ρ is the concentration for a given target orbital

in the sample. The spectral integration domain Ων covers the support of the spectral

density of the light source. The integration domain Ωθ of the emission angle of the PE

depends on the sample and the aperture of the kinetic energy analyzer.

In the case of synchrotron light sources, it is possible to assume that the light

is monochromatic (Fedoseenko et al., 2003; Kachel, 2016). The monochromaticity is

measured relatively to the central frequency value νk as the ratio of the spread ∆νk

and νk. However, the spread ∆νk should be compared to the spread of the kinetic

energy of the emitted electrons because this is the signal of interest which should not
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be blurred by the exciting light. We write fk(ν,M) = F (νk)δ(ν−νk)f(M) with F (νk)

the total photon flux [photon s−1], f(M) the profile density [m−2], and δ the Dirac

distribution modeling the spectral density [eV−1], then the electron flux is

Jkχ(Ke) = F (νk)

∫
ΩV

∫
Ωθ

σχ(νk,Ke, θ)f(M)ρ(M)e
−
∫ τmax

0

ρtot(Ms(τ))
ρ0λe(Ke)

dτ
dθdV (3)

In the most general case, the angle θ, and its domain of integration Ωθ, depend on

the location in the sample, however, we approximate θ by that of the center of the

sample and Ωθ by the apparent angle of the aperture of the analyzer from the center

of the sample. It was shown early on that the location of the sample relative to

the analyzer (Siegbahn & Siegbahn, 1973) plays an important role in the measured

signal. Also, the location in the sample, e.g. the relative angle of the surface and the

solid angle of the aperture (Olivieri et al., 2017), affects the amount of signal that

can be measured. In the latter, it is shown that the integration domain should be

the intersection between the illuminated sample volume with the observation cone.

Rigorously, the signal reaching the aperture of the spectrometer is originating from

the volume irradiated by the X-ray source convoluted with the area analyzed by the

spectrometer (Guilet et al., 2022). Note that the size of the photon beam also has an

effect on the amount of signal coming from the vapor in LJ (Olivieri et al., 2015).

From this assumption, we separate the two integrals

Jkχ(Ke) = F (νk)

∫
Ωθ

σχ(νk,Ke, θ)dθ

∫
ΩV

f(M)ρ(M)e
−
∫ τmax

0

ρtot(Ms(τ))
ρ0λe(Ke)

dτ
dV. (4)

Denoting the first integral as αθσχ(νk,Ke), then we have

Jkχ(Ke) = αθF (νk)σχ(νk,Ke)

∫
ΩV

f(M)ρ(M)e
−
∫ τmax

0

ρtot(Ms(τ))
ρ0λe(Ke)

dτ
dV. (5)

Finally, we use the alignment parameter α [m−2] an average probability density of

interaction between the photon beam and the sample (Ozon et al., 2023) to account

for approximation of the photon beam profile f by a flat profile with effective photon
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density αF (νk) and the limited angular opening of the analyzer αθ we have

Jkχ(Ke) = αF (νk)σχ(νk,Ke)

∫
ΩV

ρ(M)e
−
∫ τmax

0

ρtot(Ms(τ))
ρ0λe(Ke)

dτ
dV. (6)

For the sake of clarity, the volume integral in (6), which bears the geometry informa-

tion, will be denoted H(ρ, λe).

2. Discretization

We estimate the different cross-section densities σ̃m,kχ and the profile concentration ρ

from a very limited number of acquisitions. Typically, the number of frequencies νk

used for probing the sample is no more than K = 5. Ideally, we should have access to

sufficiently many (K = 20) frequencies so that the collection of attenuation lengths

(λk)16k6K would finely cover the range [0, Zmax] with Zmax [m] the maximum depth

at which we want to reconstruct the concentration profile.

2.1. Depth and kinetic energy

To limit the challenge, we do not seek solutions in an infinite space of functions,

but rather in a finite subspace. We approximate the sought functions by

ρ(r) =
N∑
n=1

ρnen(r) and σ̃m,kχ (Ke) =
L∑
`=1

σm,k` f`(Ke) (7)

with (en)16n6N and (f`)16`6L two basis of the linear interpolation function sub-

space. The coefficient (ρn)16n6N and (σm,k` )16`6L are the values of the functions ρ

and σ̃m,kχ evaluated at the discretization nodes of their respective domain (rn)16n6N

and (Kk
e`

)16`6L. Using these approximations in the peak model eq. (23), we obtain
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the approximation:

Imk = αkF (νk)σχ(νk)

∫
Ωk,χKe

ϕk` (Ke)
L∑
`=1

σm,k` f`(Ke)H(ρ, λe(Ke))dKe + εm,k

= αkF (νk)σχ(νk)
L∑
`=1

σm,k`

N∑
n=1

Hk
`,nρn + εm,k

= αkF (νk)σχ(νk)(σ
m,k)tHkρ+ εm,k (8)

where σm,k = [σm,k1 σm,k2 . . . σm,kL ]t and ρ = [ρ1 ρ2 . . . ρN ]t. The discretization noise

εm,k is the error due to the approximation of the functions ρ and σ̃m,kχ by their piecewise

linear approximations. The matrix element for the kth frequency is:

Hk
`,n =

∫
Ωk,χKe

ϕk` (Ke)f`(Ke)H(en, λe(Ke))dKe. (9)

Note that Hk
`,n does not depend on the specific peak m, rather it is a sample-geometry

factor.

2.2. Attenuation length

In practice, for the measurement of a single spectrum (collection of PE signals

centered around a reference kinetic energy, Kk e.g. Kk =
Kk
e1

+Kk
eL

2 ), the variation in

attenuation length λe is rather small (Thürmer et al., 2013; Ottosson et al., 2010)

compared with the central value. For instance, for λe(Kk) = 2 [nm] the variation is

of the order of 10−2 [nm] over a range of kinetic energy of a few eV. Therefore, we

assume that it can be approximated by

λe(Ke) = λk +
∂λe
∂Ke

(Kk)(Ke −Kk) +O
(
(Ke −Kk)

2
)

(10)

with λk = λe(Kk). The Landau notation O
(
(Ke −Kk)

2
)

stands for the higher order

terms, i.e. all the terms of order higher than or equal to 2 in this case. Substituting

SI(10) in the model SI(9), we obtain

H(en, λe(Ke)) = H(en, λk)

+
∂λe
∂Ke

(Kk)
Ke −Kk

λ2
k

H(endP , λk) +O
(
(Ke −Kk)

2
)

(11)
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then, provided that ∂λe
∂Ke

(Kk)
Ke−Kk
λ2
k

H(endP , λ0) << H(en, λk), we have

H(en, λe(Ke)) = H(en, λk) + ιkn (12)

where ιkn stands for the approximation error. The condition holds for the integration

domain, i.e. the support of the cross-section density σχ(νk,Ke), whose length ∆Ke

(∆Ke 6 |KeL−Ke1 | / 5 [eV]) is much smaller than the range over which the variation

in the attenuation length λe are observable, ' 100 [eV]. The matrix element simplifies

further and becomes

Hk
`,n = H(en, λk)

∫
Ωk,χKe

ϕk` (Ke)f`(Ke)dKe + ιk`,n

= TkckH(en, λk) + ιk`,n. (13)

which is in essence the outer product of a discretization matrix over the kinetic energy

space and that over the depth space. Therefore, the rank of Hk is 1, making it impos-

sible to recover depth information from one spectrum. The coefficient Tkck is the

discretization of the kernel function ϕk` onto the basis functions (f`)16`6L, and does

not depend on the index ` because the kernel and basis functions have the same form

for all index `. From here, eq. SI(8) becomes

Imk = αkTkckF (νk)σχ(νk)p
m,k[H(e1, λk), H(e2, λk) . . . H(eN , λk)]ρ+ εm,k (14)

where εm,k now also includes the approximation errors described by (ιk`,n)16`6L.

3. Photoionization cross-section density estimation

We assume that the background of the spectra have been estimated and removed from

the spectral data, for instance using the package SPANCF (Kukk et al., 2001; Kukk

et al., 2005) or any other algorithm for background removal (Baek et al., 2015). We

propose an alternative to current C1s peak fitting methods (Kukk et al., 2001; Kukk

et al., 2005; Major et al., 2020) that does not rely on parametric peaks to be fitted.
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This is a model-free method whose output is the probability density σ̃kC1s and the

area Ik, i.e. the total PE count from the signal of interest. The smooth output σ̃kC1s

is denoised and can be used as input for a regular peak fitting routine, e.g. SPANCF

(Kukk et al., 2001; Kukk et al., 2005). The method is written in terms of C1s, but is

not limited to this orbital or element.

For each kinetic energy in the kth spectrum, by combining eq. 16, eq. 22 and

eq. SI(12), we have

I(νk,K
k
e`

) = αkTkσTkF (νk)σC1s(νk)

(
H(ρ, λk) +

N∑
n=1

ρnι
k
n

)
σ̃kC1s(K

k
e`

) (15)

By definition, adding up the contribution of each kinetic energy leads to the total

count Ik:

Ik = αkTkF (νk)
σTk
δKe

σC1s(νk)

(
H(ρ, λk) +

N∑
n=1

ρnι
k
n

)
L∑
`=1

δKe σ̃
k
C1s(K

k
e`

) (16)

where the discretization step δKe [eV] is assumed constant. The discrete sum over `

is identified as the Riemann quadrature, hence 1 =
L∑
`=1

δKe σ̃
k
C1s(K

k
e`

) + O(δ2
Ke

). By

construction, the approximation error is at most linear in the kinetic energy step,

ιkn = O (δKe), and from the definition we have δKe ' σTk and δKe << ∆Ke . Hence, the

total count becomes:

Ik = αkTkF (νk)
σTk
δKe

σC1s(νk) +O(δKe). (17)

Therefore, the spectrum acquisition model can be simplified using the total count Ik

so that

I(νk,K
k
e`

) = IkδKe σ̃
k
C1s(K

k
e`

) +O(δ2
Ke) + εk` (18)

We assume that the discretization error are negligible compared with the noise level,

and that the measurement noise terms εk` ∼ N (0, (σk` )2) are mutually independent.

The total count Ik and its variance σ2
k can then be estimated from the measurements

Ik =
L∑
`=1

I(νk,K
k
e`

) and σ2
k =

L∑
`=1

(σk` )2 =
L∑
`=1

I(νk,K
k
e`

) + Ibg(νk,K
k
e`

). (19)
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From here, the coefficients of the photoionization cross-section density can be esti-

mated by solving:

I(νk,K
k
e1)

I(νk,K
k
e2)

...
I(νk,K

k
eL

)
1
0
0
...
0


=

 IkδKeIL[
δ1 δ2 . . . δL

]
D



σ̃kC1s(K

k
e1)

σ̃kC1s(K
k
e2)

...
σ̃kC1s(K

k
eL

)

+



εk1
εk2
. . .
εkL
ιc
εD1

εD2

. . .
εDL−nd


(20)

with IL the L-order identity matrix. We write the more compact form:

y = Rreg
k σ̃kC1s + ε, ε ∼ N (0,ΓI). (21)

We assume that all the perturbation elements in ε are Gaussian distributed with

covariance matrix ΓI that is block diagonal. The first block is diagonal with entries

(σk` )2. The second block is the variance of ιc should reflect the Riemann integration

error amplitude. The last block corresponding to the terms (εDi)16i6L−2 bears the

smoothness strength information. The operator D is the second order difference oper-

ator in dimension L, which regularizes the inversion by seeking somewhat smooth

solutions. Additionally, the total photoionization cross-section is a positive number

and so is its density function σC1s. The positivity constraint can be enforced in the

optimization algorithm used for seeking the solution of the optimization problem

σ̂kC1s|Ik,y ∈ arg min
σ̃kC1s>0

{‖y −Rreg
k σ̃kC1s‖2ΓI} (22)

An algorithm such as VMLM-B (Thiébaut, 2002) can solve the optimization prob-

lem SI(22). The a posteriori probability density P(σ̃kC1s|Ik,y) is modelled as the prod-

uct of three Gaussian functions, one for the PE measurements (likelihood) and two for

the a priori (smoothness and integral value). Despite being formed as the product of

Gaussian function, the resulting a posteriori is not a Gaussian function. Therefore, one
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can not conclude that the maximum of the posterior σ̂kC1s|Ik,y is also its expectation.

Estimating the uncertainty in σ̂kC1s|Ik,y due to the uncertainty in the model, i.e. the

variability of the value Ik, may be formulated as the covariance of the estimation

µσ̂C1s|y =

∫
ΩIk

σ̂C1s|Ik,yP(Ik)dIk (23)

Γσ̂C1s|y =

∫
ΩIk

(σ̂C1s|Ik,y − µσ̂C1s|y)(σ̂C1s|Ik,y − µσ̂C1s|y)tP(Ik)dIk

these quantities can be computed by sampling the model, e.g. Ik ∼ N (Īk, σ
2
k). An

example of estimation of σ̂kC1s|Ik,y for 5 photon energies is shown in fig. SI1. The

square root of the variability diagonal entries is depicted as the shaded area. Note

that due to the low dimensionality of the model (1D) and the speed for solving such a

problem, it is possible to use simple sampling methods since a small number of values

of Ik would be enough to obtain an estimation of the distribution of σ̂C1s|Ik,y.
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Fig. 1. Examples of the photoionization cross-section density estimations from the PE
spectra as described in sec. SI3 for a sample probed with five photon energies. For
each photon energy, the estimate and the uncertainty are depicted as solid lines and
shaded areas respectively.

4. Detail of the optimization problem eq. (26)

The optimization problem defined in eq. (26) of the paper relies on two probability

densities, i.e. the measurement likelihood P(y|Am, ρ) and the a priori P(Am, ρ). Here

we detail the meaning and definition of each term. As stated in sec. 3 of the paper,

the measurement noise is approximated by a Gaussian distribution because the num-

ber of counts is assumed to be greater than 30, making the Gaussian approximation

to the Poisson distribution acceptable. We chose this approximation to simplify the

implementation of the optimization algorithm, however, it is not a critical assumption

and can be modified in a straightforward manner. Here, we have the approximated
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likelihood

P(y|Am, ρ) =
1√

(2π)K det Γ
e−(y−Amρ)tΓ−1(y−Amρ). (24)

Additionally, the noise is assumed to be independent because each measurement is

acquired from different experimental setups (e.g. different photon energy) and differ-

ent samples (the piece of the sample used for acquisition is not the same for different

photon energy even though the bulk solution is the same). Therefore, the covariance

matrix Γ is diagonal with entries
(

σk
αkTkF (νk)σχ(νk)

)2
where the variance (σk)

2 is defined

in eq. SI(19). Note that accounting for the Poisson distributed noise implies changing

P(y|Am, ρ) in eq. SI(24), with expected values Ik (see eq. SI(19)). Maximizing the

likelihood is an under-determined problem because an infinity of solutions ρ lead to

y = Amρ, hence, we need to constrain the space of possible solutions. The process of

constraining the possible solutions is known as regularizing and often relies on a pri-

ori (Leong et al., 2023). The second probability density in the optimization problem

is the a priori P(Am, ρ), which reflects the knowledge of the state ρ without data,

and the uncertainty in the measurement operator. The state ρ and the measurement

operator Am are stochastically independent, hence P(Am, ρ) = P(Am)P(ρ). The state

a priori P(ρ) represents the probability density of the state ρ. It is interpreted as

the plausibility of concentration profiles. This term does not involve nor requires the

knowledge of the ground truth. Instead, it represents the properties we expect from

a concentration profile. Here, we assume that ρ is not chaotic and is rather smoothly

varying with depth (human bias). This is reasonable at the scale/granularity the sam-

ple is observed, i.e. averaged over the dimension other than the depth. To represent

mathematically this assumption, we resort to the second order difference operator

D =


1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
. . .

. . .
. . .

. . .
. . .

0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1

 (25)
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an (N−2)×N matrix which is closely related to the second-order derivative. The choice

of difference operator for regularizing optimization problem is ubiquitous and well

established in inverse problem (Stolzenburg et al., 2022; Nicholls et al., 2012; Rudin

et al., 1992; Twomey, 1963). From here, we write

P(ρ) =
1√

(2π)N−2 det ΓD
e−

1
2

(yD−Dρ)tΓ−1
D (yD−Dρ) (26)

with yD the (N − 2)-vector of expected values of second order differences, and ΓD

its covariance matrix. Numerically, we choose yD as the vector whose entries are

all 0, which implies that the expected profile is linear (at least piecewise linear). The

covariance matrix plays the role of the moderator of the linear-profile assumption. The

diagonal of ΓD expresses by how much the profile can deviate from linearity, and the

off-diagonal elements represent the correlation between the values of the second-order

differences at different depth; it is a control over the smoothness of the second-order

differences. Formally, the entries of ΓD are

ΓDi,j =
N

K
σ2
De
−

(ri−rj)2

2δ2
D , 1 6 i, j 6 N − 2 (27)

where σD [m−3] controls the amplitude of the second order difference, the correlation

length δD [nm] controls its smoothness, and the ratio N
K ensures scalability. The val-

ues for σD and δD are semi-arbitrary, they are chosen in the ballpark of acceptable

amplitude of the second order difference and arbitrarily determined so that the recon-

struction is acceptable. The choice for σD could be automated with a criteria such as

the L-curve (Stolzenburg et al., 2022).

For the optimization problem eq. (26), the probability density P (Am) does not play

role directly because the optimization is against the concentration profile ρ. How-

ever, for the quantification of uncertainty in the reconstruction due to the uncertainty

in the model, this probability is central. From the peak area model eq. SI(14), the
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measurement probability density can be written as

P(Am) = P((τk)16k6K , (λk)16k6K , ρtot)

= P((λk)16k6K |ρtot, (τk)16k6K)P(ρtot, (τk)16k6K) (28)

where τk = (αk, Tk, ck, F (νk), σξ(νk), p
m,k) gathers all the multiplicative terms of the

measurement model. Here, we are interested only in the uncertainty associated with

the attenuation lengths (λk)16k6K . As a working assumption, we state that the uncer-

tainties in the attenuation length and those of τk and ρtot are stochastically inde-

pendent, implying P((λk)16k6K |ρtot, (τk)16k6K) = P((λk)16k6K). Further, we assume

that τk and ρtot are perfectly know, therefore, the probability density of the mea-

surement operator reduces to that of the attenuation lengths P(Am) = P((λk)16k6K).

We are interested in the consequences of the deviation of the available attenuation

lengths values relative to the true values (λ0
k)16k6K , therefore, we choose to write the

probability density conditionally to the true values

P(Am) = P((λk)16k6K |(λ0
k)16k6K)P((λ0

k)16k6K). (29)

The term P((λ0
k)16k6K) is an a priori term that is uninformative for this work, so,

we focus on the conditional P((λk)16k6K |(λ0
k)16k6K). We consider two possible prob-

ability densities for describing the uncertainties: 1) independent errors, and 2) global

error. The independent errors represent the errors that the granularity of the cur-

rent models cannot represent. These error are small variations of the order of a few

percents (2.5%). On the other hand, the global error reflects uncertainties that could

result from a shift in a fit, or differences between two models. These errors are plau-

sibly of the order of 25%. For the independent error, we write for each attenuation

length

λk = (1 + κk)λ
0
k, with κk ∼ U([−τλ, τλ]) (30)
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where τλ is the relative uncertainty level, and (κk)16k6K are independent uniformly

distributed random variables. The global error is also modeled with a relative error

term, however, it the same value applies across all attenuation lengths

[λ1, λ2 . . . λK ] = (1 + κ)[λ0
1, λ

0
2 . . . λ

0
K ], with κ ∼ U([−τλ, τλ]). (31)

A more refined sampling model may be used for investigating the effect of EAL

uncertainty. For instance, the parameters of the following semi-empirical attenuation

length model from the work of (Emfietzoglou & Nikjoo, 2007) could be sampled:

λk =
Kk

A lnKk +B + C 1
Kk

. (32)

The parameters A, B and C are fitted from experimental datasets, e.g. IXS-D2, there-

fore, their accuracy is limited. This formula is an approximation of the attenuation

length variation with respect to the kinetic energy and does not capture the fine vari-

ations of the EAL. Furthermore, the model parameters depends both on the dataset

used for fitting as well as the fitting algorithm. Therefore, the parameters A, B, and

C bear uncertainty. Using this model, the attenuation length uncertainty can be rep-

resented with

P(λk|λ0
k) = P(A|A0)P(B|B0)P(C|C0) (33)

where the probability distribution for each parameter may be modeled as a uniform

distribution centered on the most likely value of the parameter, e.g. A0, B0, and C0.

The attenuation length error investigated in section 4.2.2 is equivalent to studying the

effect of the parameter B in eq. SI(32) with A = 0 and C = 0.

Finally, the data probability P(y) is not necessary to compute the MAP estimate.

Actually, in most practical cases, this probability is intractable. We choose to focus

on the noise and write

P(y) = P(y|y0)P(y0) (34)
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where P(y|y0) is the noise distribution given the non-noisy observation y0

P(y|y0) =
1√

(2π)K det Γ
e−(y−y0)tΓ−1(y−y0). (35)

For the noise marginalization, we use the above with y0 = AmρGT.

5. Truncated peak area model

Because the optimization problem eq. (26) is not numerically advantageous sepa-

rate/truncate the known from the unknown values of the concentration profile. The

augmented model is [
ym

yD

]
=

[
Am

D

]
ρ+

[
ε̃m

εD

]
= Āmρ+ ε̄m (36)

where εD is also a zero-mean Gaussian random vector which bears the meaning of tol-

erance to deviation from the expected values yD. The covariance matrix ΓD represents

the strength of the a priori.

The estimation in this form is unstable because we need to discretize the geometry

factor H fairly deep in order to capture most of the signal, e.g. 20 nm for a maximum

penetration depth of 5 nm. However, the signal is only informative over the first layers

of the surface, at most 5 nm. Hence, instead of solving for all the entries in ρ, we will

focus a the subset ρS = [ρNb+1, ρNb+2, . . . ρNS−1]t corresponding to the first layers,

and set the entries for the deeper layers to the bulk concentration ρB, hence the

concentration vector can be written as ρ = [ρ1, . . . ρ1, ρ
t
S , ρB, . . . ρB]t. Furthermore,

the first component is assumed to be known, ρ1 = 0. By reorganizing and truncating

eq. SI(36), we finally obtain:

ymS =

[
ym

yDS

]
−
[
Amb
Db

]ρ1
...
ρ1

− [AmB
DB

]ρB...
ρB

 =

[
AmS
DS

]
ρS +

[
ε̃mS
εDS

]
= ĀmS ρS + ε̄mS (37)
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where the truncated matrices are

Amb =


Am1,1 . . . Am1,Nb
Am2,1 . . . Am2,Nb

...
...

AmK,1 . . . AmK,Nb

 , AmS =


Am1,Nb+1 . . . Am1,NS−1

Am2,Nb+1 . . . Am2,NS−1
...

...
AmK,Nb+1 . . . AmK,NS−1

 , AmB =


Am1,NS . . . Am1,N
Am2,NS . . . Am2,N

...
...

AmK,NS . . . AmK,N


(38)

and

Db =


D1,1 . . . D1,Nb

D2,1 . . . D2,Nb
...

...
DK,1 . . . DK,Nb

 , DS =


D1,Nb+1 . . . D1,NS−1

D2,Nb+1 . . . D2,NS−1
...

...
DK,Nb+1 . . . DK,NS−1

 , DB =


D1,NS . . . D1,N

D2,NS . . . D2,N
...

...
DK,NS . . . DK,N


(39)

The data vector ymS is different in size from the data vector of eq. SI(36) since

only the subset of rows mapping ρS in the difference operator D are retained. Now,

the values of the data vector are corrected, the covariance too must be adjusted. For

the sake of example, we will only account for the uncertainty in the presumed known

concentration values and leave the measurement uncertainty aside. Assuming that

both ρ1 and ρB are random variables with variance σ2
B, the covariance matrix ΓmS is

then given by:

ΓmS =

[
Γ̃ 0
0 ΓDS

]
+ σ2

B

[
Amb AmB
Db DB

] [
Amb AmB
Db DB

]T
(40)

Note that accounting for the model uncertainties in the covariance model is not

required since the optimization problem eq. (26) assumes the model to be known.

6. Algorithms

6.1. Algorithm for computing the inversion

For solving the optimization problem eq. (26) for the formulation described in

sec. SI5, we turn to a primal-dual algorithm described in the paper Chambolle &

Pock (2011) because of its convergence properties, simplicity for implementing the

positivity constraint and the simplicity of implementation. The algorithm described
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in algorithm SI6.1 – dubbed ALG2 in the paper Chambolle & Pock (2011) – relies on a

primal-dual reformulation of the optimization problem and uses the proximal operator

to iteratively converge to an optimal point. The proximal operators can be understood

as projections onto convex sets. In the algorithm ALG2, the formulation alternate

between projections in the primal space and dual space. In the reformulation 28, the

projection in the dual space makes the iterates evolve toward the unconstrained solu-

tion, and the projection in the primal space enforces the positivity constraint. Other

formulations are possible, there is no unique solution to solve such problem, but the

proposed one is sufficiently efficient and intuitive.

Algorithm SI6.1: Statement of Algorithm 2 described by Chambolle & Pock (2011).

Require: γ, τ0, σ0 > 0 with τ0σ0L2
A 6 1, x0 ∈ Ωρ, s

0 ∈ Ωy, x̄
0 = x0, Nmax ∈ N,

ry ∈ [0, 1], rx ∈ [0, 1] and Γw ∈ SK++

while B̄1 + B̄2 + B̄3 do

Dual step

st+1 = proxσtF ?(s
t + σtAx̄t)

Primal step

xt+1 = proxτ tG(xt − τ tAT st+1)

Update hyper-parameters

θt = 1√
1+2γτ t

, τ t+1 = θtτ t, and σt+1 = σt

θt

x̄t+1 = xt+1 + θt(xt+1 − xt)
Stopping criterion

B1 =

(
median

k
{ |y

m
k −(Axt+1)k|

ym
k

} 6 ry

)
B2 =

(
‖xt+1−xt‖Γw
‖xt+1‖Γw

6 rx
)

B3 = (t+ 1 > Nmax)

t← t+ 1

end while

return xt

In alg. SI6.1, LA is the norm of the operator A, following the predication for the

acceleration, we set σ0 = 1
τ0L2

A
and γ = 2‖ρ̂−ρ0‖

τ0
with the distance ‖ρ̂ − ρ0‖ being

approximated by a rough upper bound of the true (unknown) distance. The upper

bound of the distance ‖ρ̂− ρ0‖ is approximated by the distance between two extreme
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cases with constant concentrations 0 and ρB, hence we set it to
√
NρB. The acceler-

ation parameter should depend on the relative strength between the likelihood and

the a priori, but we have fixed that value. It does not seem to be strongly dependent

within the tested range. In practice, the symmetric positive definite matrix Γw is taken

as the identity matrix and the relative tolerance in the data space ry and in the primal

space rx are both set to an arbitrarily small value, e.g. 10−3.

Using the notations from the paper by Chambolle and Pock 2011 (Chambolle &

Pock, 2011), the functions are

F (z) = ‖ymS − z‖2Γ = (ymS − z)T (ΓmS )−1(ymS − z) (41)

G(x) =

{
0 if ∀i, xi > 0

∞ otherwise
(42)

A = ĀmS (43)

and the proximal operators for the convex conjugate F ? and for G are

proxσF ?(s) =

(
I +

σ

2
ΓmS

)−1

(s− σymS ) (44)

proxτG(x) = (x)+ (45)

where each entry of the vector (x)+ is the corresponding entry of x if the entry is

positive and 0 otherwise.

Beside the apparent complexity of the concepts deployed for the definition of the

proximal operator and the convex conjugate, the formula for the operators (and their

implementations) are rather simple. The inverse of I+ σ
2 ΓmS only needs to be computed

once, and it can take advantage of the eigen decomposition of ΓmS .

6.2. Sampling using Metropolis-Hastings

The goal of sampling is to estimate the mean µρ|Am,y and covariance Γρ|Am,y of the

posterior distribution P(ρ|Am,y) from samples (ζi)16i6Nsample
generated by the algo-

rithm SI6.2. Other quantities defined in section 3 also rely on them. The Metropolis-
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Hastings algorithm has been described several times, notably by the authors it is

named after, Metropolis in 1949 (Metropolis & Ulam, 1949) and Hastings in 1970

(Hastings, 1970). MH has also been refined in some cases to improve its performances

(Pereyra et al., 2015). It is a sampling procedure that is based on the Monte Carlo

method. The samples proposed by a transition mechanism, i.e. a way to jump from

one state to another, are always accepted if they increase the probability distribution,

and they are not always rejected if they induce a decrease of the density. When the

proposed sample ρprop is less favorable, it is accepted with a probability that decreases

with the ratio of probability densities

τMH(ρprop, ρcurr) =
P(ρprop|Am,y)

P(ρcurr|Am,y)

qMH(ρcurr|ρprop)

qMH(ρprop|ρcurr)
(46)

The transition mechanism qMH should be designed similar to the target sampled

distribution so that it efficiently samples P(ρ|Am,y). Here we choose a symmetric

kernel – qMH(ρcurr|ρprop) = qMH(ρprop|ρcurr) – defined by a Gaussian distribution,

and the proposed sample is generated as:

ρprop = ρcurr + Γ
1
2
MHη, with η ∼ N (0, IN ) (47)

with ΓMH a covariance matrix of a correlated process, i.e. the off diagonal coefficients

are significantly non-zero. It is defined by the entries

(ΓMH)i,j = (σMH
i )2e

− (i−j)2

2δ2
MH (48)

where σMH
i =

√
5×10−2ρB << ρB and δMH = 5 for N = 100, and the dimension of ρS

is NS −Nb − 1 ∈ {10, 14} depending on the profile. This communication mechanism

ensures that the proposed state deviates by a small difference σMH and that the

difference is somewhat smooth δMH .

Algorithm SI6.2 is formulated in terms of probability density, but for numerical rea-

sons, it is here implemented in terms of the logarithm of the distributions. For sampling
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Algorithm SI6.2: Statement of Metropolis-Hasting for sampling the distribution

P(ρ|Am,y) using a symmetric transition mechanism.

Require: ζ0 initial concentration profile, number of iterations Nsample, q
MH commu-

nication mechanism

for i = 1 to i 6 Nsample, i+ + do

Draw a sample ζprop
i ∼ qMH(•|ζi−1) from eq. SI(47)

Compute the acceptance rate τMH(ζprop
i , ζi−1) from eq. SI(46)

if τMH(ζprop
i , ζi−1) > 1 then

Accept proposed state unconditionally

ζi = ζprop
i

else

Accept proposed state with probability τMH(ζprop
i , ζi−1)

Draw u ∼ U([0, 1])

if u > τMH(ζprop
i , ζi−1) then

ζi = ζprop
i

else

ζi = ζi−1

end if

end if

end for

return collection of states (ζi)16i6Nsample
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the distribution P(ρ|Am,y), we set the initial state ζ0 of the collection (ζi)16i6Nsample

to ρ̂|Am,y, so that the burn in period is very short.

7. Further results

7.1. Attenuation length sampling domain
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Fig. 2. Reconstruction of concentration profile for three different simulated experimen-
tal acquisition setups: a) and b) 5 attenuation lengths over the range [1.62, 1.95] nm
(N5), d)and d) 5 attenuation lengths over the range [1.28, 5.5] nm (W5), and e) and
f) 10 attenuation lengths over the range [1.28, 5.5] nm (W10). The panels a), c), and
e) show the estimates and the different variability, with respect to the measure-
ment noise in orange (Γρ̂|Am,y0

), and with respect to the measurement model error
in red (Γρ̂|Am0 y). The panels b) d) and f) show the conditional posterior probability
P(ρ|Am,y) (blue), and the marginals P(ρ|Am,y0) (orange) and P(ρ|Am0 ,y) (red).
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Fig. 3. Reconstruction of concentration profile for three different simulated experimen-
tal acquisition setups: a) and b) 5 attenuation lengths over the range [1.62, 1.95] nm
(N5), d)and d) 5 attenuation lengths over the range [1.28, 5.5] nm (W5), and e) and
f) 10 attenuation lengths over the range [1.28, 5.5] nm (W10). The panels a), c) and
e) show the estimates and the different variability, with respect to the measure-
ment noise in orange (Γρ̂|Am,y0

), and with respect to the measurement model error
in red (Γρ̂|Am0 y). The panels b) d) and f) show the conditional posterior probability
P(ρ|Am,y) (blue), and the marginals P(ρ|Am,y0) (orange) and P(ρ|Am0 ,y) (red).
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Fig. 4. Reconstruction of concentration profile for three different simulated experimen-
tal acquisition setups: a) and b) 5 attenuation lengths over the range [1.62, 1.95] nm
(N5), d)and d) 5 attenuation lengths over the range [1.28, 5.5] nm (W5), and e) and
f) 10 attenuation lengths over the range [1.28, 5.5] nm (W10). The panels a), c), and
e) show the estimates and the different variability, with respect to the measure-
ment noise in orange (Γρ̂|Am,y0

), and with respect to the measurement model error
in red (Γρ̂|Am0 y). The panels b) d) and f) show the conditional posterior probability
P(ρ|Am,y) (blue), and the marginals P(ρ|Am,y0) (orange) and P(ρ|Am0 ,y) (red).
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7.2. Model error: λe uncertainty

7.2.1. Independent errors
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Fig. 5. Profile reconstruction in the case W10 for two levels of attenuation length
uncertainty: a) and b) τλ = 1%, and c) and d) τλ = 2.5%. The green curves
represent the GT. In panels a) and c), the profile reconstruction are plotted in blue
(ρ̂|Am,y), orange (ρ̂|Am,y0) and red (ρ̂|Am0 ,y) with their respective variabilities as
shaded areas. In panels b) and d), the a posteriori (P(ρ|Am,y)) is represented in
blue and the marginals in orange (P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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Fig. 6. Profile reconstruction in the case W10 for two levels of attenuation length
uncertainty: a) and b) τλ = 1%, and c) and d) τλ = 2.5%. The green curves
represent the GT. In panels a) and c), the profile reconstruction are plotted in blue
(ρ̂|Am,y), orange (ρ̂|Am,y0) and red (ρ̂|Am0 ,y) with their respective variabilities as
shaded areas. In panels b) and d), the a posteriori (P(ρ|Am,y)) is represented in
blue, and the marginals in orange (P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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Fig. 7. Profile reconstruction in the case W10 for two levels of attenuation length
uncertainty: a) and b) τλ = 1%, and c) and d) τλ = 2.5%. The green curves
represent the GT. In panels a) and c), the profile reconstruction are plotted in blue
(ρ̂|Am,y), orange (ρ̂|Am,y0) and red (ρ̂|Am0 ,y) with their respective variabilities as
shaded areas. In panels b) and d), the a posteriori (P(ρ|Am,y)) in represented in
blue and the marginals in orange (P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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7.2.2. Global error
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Fig. 8. Profile reconstruction in the case W10 for three levels of global attenuation
length uncertainty: a) and b) τλ = 10%, c) and d) τλ = 20%, and e) and f) τλ =
30%. The green curves represents the GT. In the panels a), c) and e), the profile
reconstruction are plotted in blue (ρ̂|Am,y), orange (ρ̂|Am,y0) and red (ρ̂|Am0 ,y)
with their respective variabilities as shaded areas. In the panels b), d), and f),
the a posteriori (P(ρ|Am,y)) in represented in blue and the marginals in orange
(P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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Fig. 9. Profile reconstruction in the case W10 for three levels of global attenuation
length uncertainty: a) and b) τλ = 10%, c) and d) τλ = 20%, and e) and f) τλ =
30%. The green curves represents the GT. In the panels a), c) and e), the profile
reconstruction are plotted in blue (ρ̂|Am,y), orange (ρ̂|Am,y0) and red (ρ̂|Am0 ,y)
with their respective variabilities as shaded areas. In the panels b), d), and f),
the a posteriori (P(ρ|Am,y)) in represented in blue and the marginals in orange
(P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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Fig. 10. Profile reconstruction in the case W10 for three levels of global attenuation
length uncertainty: a) and b) τλ = 10%, c) and d) τλ = 20%, and e) and f) τλ =
30%. The green curves represents the GT. In the panels a), c) and e), the profile
reconstruction are plotted in blue (ρ̂|Am,y), orange (ρ̂|Am,y0) and red (ρ̂|Am0 ,y)
with their respective variabilities as shaded areas. In the panels b), d), and f),
the a posteriori (P(ρ|Am,y)) in represented in blue and the marginals in orange
(P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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7.3. Measurement noise

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
nc

en
tr

at
io

n
[a

.u
.]

a)

estimate ρ̂|Am,y
meas. op. var. ρ̂|Am0 ,y
meas. noise var. ρ̂|Am,y0

GT

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

b)

P(ρ|Am,y)

P(ρ|Am0 ,y)

P(ρ|Am,y0)

GT

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
depth [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
nc

en
tr

at
io

n
[a

.u
.]

c)

estimate ρ̂|Am,y
meas. op. var. ρ̂|Am0 ,y
meas. noise var. ρ̂|Am,y0

GT

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
depth [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d)

P(ρ|Am,y)

P(ρ|Am0 ,y)

P(ρ|Am,y0)

GT

Fig. 11. Reconstruction of concentration profile for two levels of acquisition noise:

panels a and b) very low (σk = 0.01, SNR =
E[Imk ]2

σ2
k
∈ [250 × 103, 16 × 106]), and

panels c) and d) very high (σk = 0.5, SNR ∈ [100, 6400]). In the panels a) and c),
the profile reconstruction are plotted in blue (ρ̂|Am,y), orange (ρ̂|Am,y0) and red
(ρ̂|Am0 ,y) with their respective variabilities as shaded areas. In the panels b) and
d), the a posteriori (P(ρ|Am,y)) in represented in blue and the marginals in orange
(P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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Fig. 12. Reconstruction of concentration profile for two levels of acquisition noise:

panels a and b) very low (σk = 0.01, SNR =
E[Imk ]2

σ2
k
∈ [250 × 103, 16 × 106]), and

panels c) and d) very high (σk = 0.5, SNR ∈ [100, 6400]). In the panels a) and c),
the profile reconstruction are plotted in blue (ρ̂|Am,y), orange (ρ̂|Am,y0) and red
(ρ̂|Am0 ,y) with their respective variabilities as shaded areas. In the panels b) and
d), the a posteriori (P(ρ|Am,y)) in represented in blue and the marginals in orange
(P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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Fig. 13. Reconstruction of concentration profile for two levels of acquisition noise:

panels a and b) very low (σk = 0.01, SNR =
E[Imk ]2

σ2
k
∈ [250 × 103, 16 × 106]), and

panels c) and d) very high (σk = 0.5, SNR ∈ [100, 6400]). In panels a) and c),
the profile reconstruction are plotted in blue (ρ̂|Am,y), orange (ρ̂|Am,y0) and red
(ρ̂|Am0 ,y) with their respective variabilities as shaded areas. In panels b) and d),
the a posteriori (P(ρ|Am,y)) is represented in blue, and the marginals in orange
(P(ρ|Am,y0)) and red (P(ρ|Am0 ,y)).
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8. List of notations

8.1. Forward model

Table 1: List of notations and symbols used for the forward
model

Name Units Definition

M = (x, y, z) [m,m,m]
point in the sampleM = (r, θ, y) [m, rad,m]

M = (r, θ, φ) [m, rad, rad]
P = (x0, y0, z0) [m,m,m]

location of the aperture of the analyzerP = (R0, θ0, y0) [m, rad,m]
P = (R0, θ0, φ0) [m, rad, rad]

θ [rad]

angular direction in polar and spherical
coordinates, and angle between the polarization
vector of the light and the direction of the
emitted PE

Ωθ - angular integration domain
αθ [sr] angular aperture of the analyzer

(ω, β) [rad,rad] direction angles of the parametric curve Ms

ξ [rad]
angle between MP and OM in spherical
approximation

s [m] signed distance from point M
µ0 [m] radius of the LJ
τmax [m] distance ‖MP‖
τ̄ [m] upper limit of the distance integral

Ms -
parametric curve leading to the surface of the
liquid in the direction of the analyzer

d(M) [m] signed distance between M and the sample surface
∆r [m] characteristic transition length associated with the sample
ρ [m−3] concentration of orbital
ρtot [m−3] sum of the concentration of all the species

H(ρ, λe) [-] geometry factor
ΩV - integration domain covering the sample

Φ(θ) [rad]
azimuth angle amplitude in the volume
integration domain ΩV in spherical coordinates

` - kinetic energy index: discretization point
L - number of discretization points or channel nodes
λe [m] attenuation length
Ke [eV] kinetic energy
Kk
e`

[eV] `th kinetic energy discretization point
ϕk` [s] efficiency function of the analyzer
σTk [eV] spread in kinetic energy (standard deviation)
Tk [s] gain of the analyzer (the transmission function)

Ωk,χ
Ke

[eV]
kinetic energy integration domain covering the
photoionization cross-section density support
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k - photon energy index
K - number of photon energy
ν [Hz] frequency of the light
hν [eV] photon energy
νk [Hz] kth central frequency value of the exciting light

∆νk [Hz] spectral spread of the light for the kth frequency

δ(ν − νk) [eV−1]
Dirac distribution modeling the monochromatic
spectral density

F (νk) [photon s−1] total photon flux

f(M) [m−2]
beam profile: density in the plane orthogonal to
the propagation direction of the light

f(ν,M) [m−2 eV−1 s−1] the photon flux density
Ων [eV] photon energy integration domain
αk [m−2] alignment parameter

Ψi,N , Ψf,N -
initial and final states of a quantum system with N
electrons

ϕ1s
i , ϕKei -

states of the emitted electron before and after the
interaction with a photon

∆ [eV] interaction potential
A [V s m−1] vector potential
χ - designation of the orbital of an element, e.g. C1s
σχ - photoionization cross-section

σχ(ν) [m2] total photoionization cross-section
σχ(ν, θ) [m2 sr−1] differential photoionization cross-section
σχ(ν,Ke) [m2 eV−1] photoionization cross-section density
σχ(ν,Ke, θ) [m2 eV−1 sr−1] differential photoionization cross-section density

m - peak area index (related to chemical state)
M - number of peaks per spectra

pm,k -
probabilities of interaction photon/chemical-state-m
for a photon energy hνk

σm,kχ (Ke) [m2eV−1]
mth peak of the photoionization cross-section
density for photon energy hνk

σ̃kχ(Ke), σ̃
m,k
χ (Ke) [eV−1]

photoionization cross-section probability density with
photon energy νk and for the mth peak

I(ν,Ke, θ, x, y) [m−2 eV−1 s−1] spectral density of the PE flux
J(νk,Ke) [electron s−1] PE rate
I(νk,K

k
e`

) [counts] counts of PEs of interest
Ibg(νk,K

k
e`

) [counts] background signal

εk` [counts]
measurement noise of the `th point in the spectrum
acquired at the photon energy hνk

(σk` )2 [counts2] variance of the measurement noise εk`
Itot(νk,K

k
e`

) [counts] total measured signal

Imk [counts]
peak area from species in mth chemical state for the
photon energy hνk
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8.2. Numerical methods

Table 2: List of notations for the inversion methodologies and
results

Name Units Definition

y - measurement vector

ym,ymS -
mth normalized peak area measurement vector
(complete and truncated model)

yD,yDS -
expected values of the a priori for the concentration
profile estimation model (complete and truncated)

ρ [m−3] the concentration profile

ρS [m−3]
the concentration profile subset corresponding to the
first layers

ρB [m−3] the bulk concentration

σ2
B [(m−3)2]

variance of the known values of the concentration
profile (ρ1 and ρB)

δB [m]
thickness of the surface layer: deeper than δB, the
concentration is that of the bulk

D, DS , Db, DB - second order difference operator and its restrictions

Ik [counts]
total area under the curve: counts of all the PE for
the photon energy hνk

Rreg
k -

augmented state measurement model for the
estimation of the cross-section probability density

Hk, Hk
`,n [s eV m3]

matrix and its element for the kth frequency
geometry factor including the analyzer function ϕk`

ΓAm
k

[(m3)2]
covariance matrix of the peak area model for the kth

measurement

Am, AmS , Amb , AmB [m3]
mth normalized peak area operator for all photon
energy (complete and truncated model)

Ām, ĀmS -
augmented measurement model for the mth

normalized peak area (complete and truncated model)

P(ρ|Am,y) -
a posteriori probability density of the concentration
profile ρ

P(y|Am, ρ) - peak area measurement likelihood probability

P(y) -
a priori probability of any measurement y or noise
distribution

P(Am) -
a priori probability distribution of the measurement
operator, reflects the modeling uncertainties

P(Am, ρ) -
joint a priori probability distribution of the
measurement operator and the state

Ωy, ΩAm - set of all possible values of y and Am

P(Ik) -
probability density of the total PE count for the
photon energy hνk

Īk [counts]
mean value of the total PE count for the photon
energy hνk
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ΩIk -
interval of all possible values of the total PE count
for the photon energy hνk

‖x‖2W
- notation for the quadratic xtW−1x with W positive

definite
O (xγ) - Landau notation for bonded terms of order > γ
IL - L-order identity matrix

ρ̂|Am,y [m−3] MAP estimate of the profile concentration
σ̂kC1s|Ik,y [eV−1] MAP estimate of the cross-section probability density

P(σ̃kC1s|Ik,y) -
a posteriori probability density modelling the
cross-section density

ΓD, ΓDS -
covariance matrix of the a priori distribution of ρ and
ρS

σ2
k [counts2]

variance corresponding to the peak areas obtain from
the photon energy νk

Γ -
covariance matrix of the peak area measurement noise
(diagonal entries ( σk

αkTkF (νk)σC1s(νk))2)

ΓI -
covariance matrix of the augmented state (spectrum
and a priori) for the estimation of the cross-section
density

εm,k [counts]
discretization error in the mth peak area measurement
model for the photon energy hνk

εk` [counts]
measurement noise in the `th point in the spectrum
for the photon energy hνk

ιkn -
approximation error in the geometry factor when

λe(Ke) = λe(Kk) for Ke ∈ Ωk,χ
Ke

ιc - Riemann quadrature error

εD, εDS -
a priori error term: their distribution is used for
regularization of the inverse problems

ε -
augmented state error term in the model for the
estimation of the cross-section density

ε̃m, ε̃mk [eV−1] normalized mth peak area measurement noise

ε̃mS [eV−1]
normalized mth peak area measurement noise with the
correction due to the truncation of the profile

ε̄m, ε̄mS -
noise of the augmented state measurement model for
the mth peak area (complete and truncated profile)

µρ|Am,y, Γρ|Am,y [m−3], [(m−3)2]
mean and covariance matrix of the posterior
distribution P(ρ|Am,y)

µρ|Am0 ,y, Γρ|Am0 ,y [m−3], [(m−3)2]
mean and covariance matrix of the marginal
distribution P(ρ|Am0 ,y)

µρ|Am,y0
, Γρ|Am,y0

[m−3], [(m−3)2]
mean and covariance matrix of the marginal
distribution P(ρ|Am,y0)

µρ̂|Am0 ,y, Γρ̂|Am0 ,y [m−3], [(m−3)2]
mean and covariance matrix of the MAP estimate
of the concentration profile for a given y

µρ̂|Am,y0
, Γρ̂|Am,y0

[m−3], [(m−3)2]
mean and covariance matrix of the MAP estimate
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of the concentration profile for a given Am

µσ̂kC1s|y
, Γσ̂kC1s|y [eV−1], [(eV−1)2]

mean and covariance matrix of the MAP estimate
of the cross-section density for a given y

n - depth discretization index
N - number of discretization depth points
rn [m] nth discretization depth point

Zmax [m]
maximum depth at which we want to reconstruct the
concentration profile

Kk [eV] reference kinetic energy for the kth measurement
δKe [eV] discretization step in the kinetic energy domain

∆Ke [eV]
length of the kinetic energy support of the
photoionization cross-section density σχ(νk,Ke)

λk [m] attenuation lengths λe(Kk)
ρn, [m−3] value of the concentration profile ρ evaluated at rn

(σm,k` )16`6L [eV−1] value of the cross-section density σm,kχ evaluated at Kk
e`

en - linear interpolation basis function in the depth space

f` -
linear interpolation basis function in the kinetic energy
space

ck - discretization coefficient of ϕ`k normalized by Tk
τλ - uncertainty rate in the value of the attenuation length

8.3. Additional notations

Table 3: List of additional notations

Name Units Definition

t - iteration index
Nmax - maximum number of iterations
rx, ry - relative tolerance in the primal and data spaces
xt, st - primal and dual variables

γ, τ t, σt, θt - parameter of ALG2(Chambolle & Pock, 2011)
LA - Lipschitz constant of ĀmS
Ωρ - set of possible values of ρ
SK++ - set of symmetric definite positive matrix of order K

Γw
- symmetric definite positive matrix of order K used

for the stopping criterion of ALG2

B1, B2, B3 -
Boolean variables for the stopping criterion of
ALG2(Chambolle & Pock, 2011)

prox - proximal operator

G, F -
primal and dual function defining the inverse problem
28 in the optimization algorithm

ρcurr, ρprop [m−3]
current and proposed state for
MH(Metropolis & Ulam, 1949; Hastings, 1970)

qMH -
transition mechanism in MH algorithm: randomly
creates a new state from the current state

τMH(ρprop, ρcurr) - acceptance rate
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ΓMH [(m−3)2]
covariance matrix of the distribution of the transition
mechanism

σMH
i [m−3] ith diagonal entry of ΓMH

δMH - correlation length of ΓMH

NS - dimension of ρS as well as ΓMH

Nsample - number of iteration in MH algorithm
η - normally distributed random variable
N , U - normal and uniform distributions

8.4. Acronyms

Table 4: List of acronyms

Name Definition

XPS X-ray photoelectron spectroscopy
PE photoelectron

IMFP inelastic mean free path
EMFP elastic mean free path
EAL effective attenuation length
LJ liquid microjet
MD molecular dynamics
CCD charged couple devices
CEM channel electron multiplier
SA/V surface area to volume ratio [m−1]
MH the Metropolis-Hastings algorithm

VMLM-B variable metric limited memory with bounds algorithm
GT ground truth

MAP maximum a posteriori
SNR signal-to-noise ratio

W10, W5
profile reconstruction case based on measurements on 10 and 5
attenuation lengths in the range [1.28, 5.50] nm

N5
profile reconstruction case based on measurements 5 attenuation
lengths in the range [1.62, 1.95] nm
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