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S1. Update to Fitch and Dejoie (2021) 

In Fitch and Dejoie (2021) a method was developed for correcting the angles given by the nominal 

position of the diffractometer arm, to the true 2 position defined by diffraction from the sample, via 

the axial position of the photon arriving on the detector. As part of that procedure equations (17) and 

(22) of that paper were derived which take the form of 

𝑋 cos(𝐴) + 𝑌 sin(𝐴) = 𝑍    (S1) 

where X, Y and Z are combinations of trigonometric functions of various angular quantities and A is 

related to the angle of the diffractometer arm, (2Θ − 𝑎) , or to the true diffraction angle 2 at the 

sample, quantities that are being sought in the procedures; (2Θ is the mechanical angle of the detector 

arm and θ𝑎 is the Bragg angle of the analyser crystal). The equations were manipulated to yield 

quadratic equations, e.g. equation (19), with solutions, equations (20) and (22), in the form,  

cos(𝐴) =
2𝑍𝑋±[4𝑍2𝑋2−4(𝑋2+𝑌2)(𝑍2−𝑌2)]

1 2⁄

2(𝑋2+𝑌2)
    (S2) 

The desired quantity A was obtained by taking the inverse cosine. However a computational problem 

arises if (2Θ − 𝑎) is negative (i.e. at low-angle regions of the powder diffraction pattern) because 

cos(𝐴) =  cos(−𝐴) and the positive rather than the negative solution is returned. A method for 

dealing with this was given in the supplementary information, section S4, involving numerically 

calculating a second derivative. We now have a more convenient approach avoiding this issue. 

Equation (S1) can be solved to yield (thanks to Wolfram Alpha) 

𝐴 = 2 tan−1 (
𝑌 ±[𝑋2+𝑌2−𝑍2]

1 2⁄

𝑋+𝑍
)     (S3) 

Tan-1(x) is a one-to-one function with values in the range –/2  /2, thus (S3) covers a continuous 

range of angles of –180  180°. The relevant function in the Topas refinement becomes 

 

fn dd(om, fx, fy) {  

def xx = Sin(fx) Sin(fy) Cos(2 Th) - Cos(fx) Sin(2 Th) Cos(om) ;  

def yy = Cos(fx) Cos(2 Th) + Sin(fx) Sin(fy) Sin(2 Th) Cos(om) ;  

def zz = Sin(fx) Cos(fy) Sin(om) Sin(2 Th) - Sin(alpha) ;  

   

def TT = 2 ArcTan((yy - Sqrt(xx^2 + yy^2 - zz^2)) / (xx + zz))  ;  

def Delta = (TT + alpha - 2 Th ) ;   ' Delta is in radians  

return Delta ; }   
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S2. Comparison between data collected with and without analyser crystals. 

 

Figure S1 Comparison of the (left) 110 and (right) 500/430 peaks of NIST 660c LaB6 measured in a 

0.5 mm diameter capillary at 35 keV; (black) with the multi-analyser stage,  = 0.354243 Å, FWHM 

of 0.0025° and 0.0045°, respectively; (red) without the multi-analyser stage, beam focussed on the 

Eiger detector at 676.4 mm from the sample, see main section 3.2.2,  = 0.354294 Å, FWHM of 

0.0115° and 0.0148°, respectively. 

 

 

Figure S2 Pair distribution functions obtained from data collected with (blue) the high-resolution 

setup; and (red, offset by +7) the Perkin Elmer detector; expanded low-r part of main Fig.7. Evidently 

the two PDFs are very similar. 
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