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The following document provides supplemental information on the main text. This in-

cludes Laue detector calibration using two known Bragg peaks (Appendix A), mathemati-

cal determination of the rotation/orientation matrix from a specific set of goniometer an-

gles (Appendix B), detector parameter optimization (Appendix C), demonstration of the 

twiddle algorithm on parameter optimization for rolling ball algorithm (Appendix D), 

grain size distribution (Appendix E), an example of using rolling ball algorithm with dif-

ferent radius (Appendix F), and high-resolution SEM images for crystals (Appendix G). 

S1. Laue detector calibration using two known Bragg peaks 

For the detector calibration we used a [001]-oriented Silicon wafer. The crystal orientation matrix was analyt-

ically derived by creating orthogonal vector bases in the crystal, sample, and laboratory frames and measuring 

two independent Bragg reflections with known Miller indices, which in turn, will define two vectors in the crystal 

and laboratory frames. An initial list of Miller indices was generated for all the peaks that are predicted to ap-

pear on the detector. The coordinates of each peak on the detector are calculated by forward modeling the dif-

fraction patterns in Laue geometry at the beamline’s experimental setup (Ploc, 1983). Finally, we optimize the 

detector parameters, which consist of two three-component Rodrigues rotation and translation vectors (Randle 

& Day, 1993), by minimizing the average distance of each simulated peak on the detector from the experimen-

tally observed peaks on the measured Laue patterns using a direct-search method used for non-linear problems 

with multiple variables (Nelder & Mead, 1965; Spendley et al., 1962).  

We measured the (11‾1‾) and (22‾0) Bragg reflections by rotating the sample to specific 𝜃, 𝜒, 𝜙 angles deter-

mined in the laboratory frame where the peak intensity of each Silicon Bragg peak was maximized. Fig. 1(b) in 

the main manuscript shows the crystal unit cell and crystallographic planes, which satisfy the Bragg condition for 

the (22‾0) and (11‾1‾) reflections. Each 𝐐11‾ 1‾
lab  and 𝐐22‾ 0

lab  vector is perpendicular to the indicated family of atomic 

planes when the Bragg condition is satisfied for one set of planes, thus, during two different and independent 

measurements. The x-ray beam is propagating along the 𝑧 axis, with the 𝑦 axis pointing up, and the 𝑥 axis point-

ing outward from the storage ring.  



 

 

J. Synchrotron Rad. (2023). 30,  https://doi.org/10.1107/S160057752300365X        Supporting information, sup-2 

Then, we constructed orthonormal vector bases in the three different reference frames and derived the ma-

trices that transform a vector expressed in one reference frame to another (the derivation of transformation 

matrix is given in Appendix B). In three-dimensional space the term orthonormal refers to any set of unitary vec-

tors, which are normal to each other (Koks, 2006). A set of orthonormal, thus, linearly independent vectors com-

pose a vector basis. Any arbitrary vector can be expressed as a linear combination of the base vectors. 

For each Bragg reflection, we can calculate the 𝐐11‾ 1‾
l𝑎𝑏 , 𝐐22‾ 0

l𝑎𝑏  vectors, which are given by 

𝐐ℎ𝑘ℓ
l𝑎𝑏 = 𝐤𝑓 − 𝐤𝑖.      (1) 

where 

𝐤𝑖 = (
0
0
1

)     (2) 

since the incident x-rays are parallel to the 𝑧 axis of the laboratory frame and 

𝐤𝑓 =
2𝜋

𝜆
(
cos𝛾sin𝛿

sin𝛾
cos𝛾cos𝛿

)     (3) 

with 𝛿, 𝛾 the detector angles as depicted in Fig. 1(a) of the main manuscript and 𝜆 the x-ray wavelength.  

Since we also know the Miller indices of the two measured Bragg peaks (11‾1‾), (22‾0), we can calculate the 

𝐐11‾ 1‾
𝑐𝑟𝑦𝑠𝑡

 and 𝐐22‾ 0
𝑐𝑟𝑦𝑠𝑡

 vectors in the crystal frame (Zhang et al., 2014): 

𝐐ℎ𝑘ℓ
𝑐𝑟𝑦𝑠𝑡

=
[ℎ, 𝑘, ℓ]

∥ [ℎ, 𝑘, ℓ] ∥
=

[ℎ, 𝑘, ℓ]

√ℎ2 + 𝑘2 + ℓ2
      (4) 

We used the 𝐚 ≡ 𝐐11‾ 1‾
𝑐𝑟𝑦𝑠𝑡

 and 𝐛 ≡ 𝐐22‾ 0
𝑐𝑟𝑦𝑠𝑡

 vectors shown in Fig. S1 to construct an orthogonal vector basis in 

the crystal frame {�̂�𝑖
𝑐}: {�̂�1

𝑐 , �̂�2
𝑐 , �̂�3

𝑐 } with all vectors being unitary. First, we project vector 𝐛 on 𝐚. This gives us a 

new vector 

𝐚1 =∥ 𝐛 ∥ cos𝜔�̂� =∥ 𝐛 ∥
𝐚 ⋅ 𝐛

∥ 𝐚 ∥∥ 𝐛 ∥
�̂� = (𝐛 ⋅ �̂�)�̂�      (5) 

with 𝜔 the angle between the two Bragg reflections (vectors 𝐚, 𝐛), which is 35.26∘ between the [111] and [110] 

families of atomic planes. The difference between the 𝐛 and 𝐚1 vectors correspond to a vector, which is perpen-

dicular to the 𝐚 and 𝐚1 vectors as shown in Fig. S1. 
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Figure S1 Construction of a vector basis from two known vectors. 

 

We pick the third linearly independent vector to be the cross product of the two vectors. Thus, we have 

𝐚2 = 𝐛 − 𝐚1 and 𝐚3 = 𝐚1 × 𝐚2      (6) 

Then, by normalizing the 𝐚1, 𝐚2, 𝐚3 vectors we create a vector basis in the crystal frame, shown in Fig. S1(b). 

{�̂�𝑖
𝑐}: {�̂�1

𝑐 , �̂�2
𝑐 , �̂�3

𝑐 }     (7) 

Similarly, we can construct from the measured 𝐐11‾ 1‾
ℓ𝑎𝑏 and 𝐐22‾ 0

ℓ𝑎𝑏 vectors a vector basis in the laboratory frame 

{�̂�ℓ}: {�̂�1
ℓ , �̂�2

ℓ , �̂�3
ℓ}.     (8) 

Consider 𝐴 a transformation matrix, which transforms a vector basis in the crystal frame to the laboratory frame 

such 

𝐴�̂�𝒄 = �̂�𝓵 ⇒ 𝐴[�̂�𝟏
𝒄 �̂�𝟐

𝒄 �̂�𝟑
𝒄 ] = [�̂�𝟏

𝓵�̂�𝟐
𝓵�̂�𝟑

𝓵] 

⇒ 𝐴 = [�̂�𝟏
𝓵�̂�𝟐

𝓵�̂�𝟑
𝓵][�̂�𝟏

𝒄 �̂�𝟐
𝒄 �̂�𝟑

𝒄 ]−1      (9)   

𝐵, a matrix that transforms a vector basis in the crystal frame to the sample frame 

𝐵�̂�𝒄 = �̂�𝒔 ⇒ 𝐵[�̂�𝟏
𝒄 �̂�𝟐

𝒄 �̂�𝟑
𝒄 ] = [�̂�𝟏

𝒔 �̂�𝟐
𝒔 �̂�𝟑

𝒔 ] 

⇒ 𝐵 = [�̂�𝟏
𝒔 �̂�𝟐

𝒔 �̂�𝟑
𝒔 ][�̂�𝟏

𝒄 �̂�𝟐
𝒄 �̂�𝟑

𝒄 ]−1        (10)    

and 𝐶, a matrix transforming a vector basis in the sample frame to the laboratory frame 

𝐶�̂�𝒔 = �̂�𝒍 ⇒ 𝐶[�̂�𝟏
𝒔 �̂�𝟐

𝒔 �̂�𝟑
𝒔 ] = [�̂�𝟏

𝒍 �̂�𝟐
𝒍 �̂�𝟑

𝒍 ] 

⇒ 𝐶 = [�̂�𝟏
𝒍 �̂�𝟐

𝒍 �̂�𝟑
𝒍 ][�̂�𝟏

𝒔 �̂�𝟐
𝒔 �̂�𝟑

𝒔 ]−1         (11)   

We can easily derive the following relations between the 𝐴, 𝐵, and 𝐶 matrices: 
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�̂�𝒍 = 𝐶�̂�𝒔 = 𝐶𝐵�̂�𝒄

�̂�𝒍 = 𝐴�̂�𝒄

⇒ 𝐴 = 𝐶𝐵 = 𝐵𝑇𝐶𝑇         (12)  

 

and 

�̂�𝒄 = 𝐴𝑇�̂�𝒍 = 𝐴𝑇𝐶�̂�𝒔

�̂�𝒄 = 𝐵𝑇�̂�𝒔

⇒ 𝐵𝑇 = 𝐴𝑇𝐶 ⇒ 𝐴𝐵𝑇 = 𝐶        (13)  

 

The transformation matrix B translates the crystal orientation in the crystal frame to an orientation in the sam-

ple frame, which can be described in principle, by two in-plane and out-of-plane vectors. In the laboratory 

frame, by definition 𝜃 = 0, 𝜒 = 90∘, and 𝜙 = 0. Thus, to simulate any Laue pattern, which is acquired at a spe-

cific set of goniometer angles one must consider the rotation of the sample to that set of angles. The determina-

tion of rotation matrix from a set of goniometer angles is mentioned Appendix B. The incident beam is parallel 

to 𝑧ℓ, 𝑦ℓ is up and 𝑥ℓ chosen to form a right-hand system. At the APS, 𝑥ℓ points outwards of the experimental 

hutch, 𝑧ℓ = 𝑥ℓ × 𝑦ℓ. The sample frame provides a basis in which to represent a uniquely oriented crystal speci-

men. For an arbitrarily oriented sample, coordinates in {𝑥𝑠, 𝑦𝑠, 𝑧𝑠} are related to {𝑥ℓ, 𝑦ℓ, 𝑧ℓ} via the rotation ma-

trix (the sample frame w.r.t. the Lab frame) : 

𝐆 = 𝐑𝜃,𝑦𝐑90−𝜒,𝑧𝐑𝜙,𝑥       (14)   

Then, we need to define the conventional Bunge-style orientation matrix for the crystal with respect to the sam-

ple reference frame. If we have a set of Bunge Euler angles (in our case, single-crystal (001)-oriented Silicon is 

𝜙1 = 0, 𝛷 = 0, 𝜙2 = 0), we can obtain the orientation matrix 𝐠𝐢𝐣 in Appendix B. With the knowledge of two sets 

of goniometer angles 𝜃1, 𝜒1, 𝜙1, 𝜃2, 𝜒2, 𝜙2, we can get the rotation matrix 𝐆1 and 𝐆2 by Equation 14. We can 

apply the rotation matrix 𝐆1 and 𝐆2 and the orientation matrix 𝐠𝐢𝐣 to the corresponding 𝐐22‾ 0
l𝑎𝑏 , 𝐐11‾ 1‾

l𝑎𝑏 , which re-

lates the vectors in the lab frame (e.g., a diffracted beam arriving on the Bragg detector, or on the Laue detec-

tor) to crystal directions. 

𝐐22‾ 0
𝑐𝑟𝑦𝑠𝑡

= 𝐠𝑖𝑗 ⋅ 𝐐22‾ 0
ℓ𝑎𝑏 ⋅ 𝐆1       (15)   

𝐐11‾ 1‾
𝑐𝑟𝑦𝑠𝑡

= 𝐠𝑖𝑗 ⋅ 𝐐11‾ 1‾
l𝑎𝑏 ⋅ 𝐆2       (16)   

θ = arccos
𝐐11‾ 1‾

cryst
𝐐22‾0

cryst

∥ 𝐐
11‾ 1‾
cryst

𝐐
22‾0

cryst
∥

       (17)   

Combining Error! Reference source not found., Error! Reference source not found., and Error! Reference 

source not found., we can fully constrain the orientation of the crystal with respect to the lab frame. This 
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method determines the orientation of the substrate in the lab reference frame. In order to simulate the Laue 

pattern on the detector, we not only need the orientation matrix of substrate in the lab frame, but also the 

translation vector 𝐏 and the rotation matrix 𝐑 for the detector in the lab frame. 

We define the vector 𝐃 as a conversion vector, coordinates in {𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑} are connected to {𝑥ℓ, 𝑦ℓ, 𝑧ℓ} via the 

rotation matrix 𝐑 and translation vector 𝐏. we use the following equation to calculate the coordinates of 𝐃 on 

the detector: 

𝐃 = 𝐑[(𝑥ℓ, 𝑦ℓ, 𝑧ℓ) + 𝐏]       (18)   

The rotation matrix 𝐑 can be defined in a similar way 

𝐑 = 𝐑𝛿,𝑦𝐑−𝛾,𝑥       (19)   

According to Error! Reference source not found. and Appendix B, we get the rotation matrix 𝐑: 

𝐑 = (
cos𝛿 −sin𝛿sin𝛾 sin𝛿cos𝛾

0 cos𝛾 sin𝛾
−sin𝛿 −sin𝛾cos𝛿 cos𝛿cos𝛾

)       (20)   

Then, the detector parameters will be optimized by the methods in Appendix C. 

S2. Mathematical determination of rotation/orientation matrix from a set of specific set of goniometer     

angles 

The lab frame is intended to provide a global reference frame that is stationary during the experiment. With re-

gards to the geometric construction, we define the incident beam to be parallel to 𝑧ℓ, 𝑦ℓ is up and 𝑥ℓ chosen to 

form a right-hand system (at the APS, 𝑥ℓ points out the door of the hutch), 𝑧ℓ = 𝑥ℓ × 𝑦ℓ. The sample frame pro-

vides a basis in which to represent a uniquely oriented and located specimen. For the arbitrarily defined sample-

relative vector 𝑆, coordinates in {𝑥𝑠, 𝑦𝑠, 𝑧𝑠} are related to {𝑥ℓ, 𝑦ℓ, 𝑧ℓ} via the rotation matrix 𝐆 =

𝐑𝜃,𝑦𝐑90−𝜒,𝑧𝐑𝜙,𝑥 in Equation 14. 

𝐑𝜃,𝑦 = {
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

}   (21𝑎)

𝐑90−𝜒,𝑧 = {
𝑐𝑜𝑠(90 − 𝜒) −𝑠𝑖𝑛(90 − 𝜒) 0

𝑠𝑖𝑛(90 − 𝜒) 𝑐𝑜𝑠(90 − 𝜒) 0
0 0 1

} = {
𝑠𝑖𝑛𝜒 −𝑐𝑜𝑠𝜒 0
𝑐𝑜𝑠𝜒 𝑠𝑖𝑛𝜒 0

0 0 1
}

𝐑𝜙,𝑥 = {
1 0 0
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

}   (21𝑐)

   (21𝑏) 

Combining Equation 14 and Equation 21, we can get the rotation matrix 𝐆. 
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G = {
cosθsinχ -cosθcosχcosϕ+sinθsinϕ cosθcosχsinϕ+sinθcosϕ

cosχ sinχcosϕ -sinχsinϕ
-sinθsinχ sinθcosχcosϕ+sinϕcosθ -sinθsinϕcosχ+cosθcosϕ

}    (22) 

Finally, we can define the conventional (Bunge-style) orientation matrix from a set of Bunge Euler angles 

{𝜙1, 𝛷, 𝜙2}. We can express the orientation matrix 𝐠𝐢𝐣 as: 

𝐠𝐢𝐣 = 

{

cos𝜙1cos𝜙2 − sin𝜙1sin𝜙2cos𝛷 sin𝜙1cos𝜙2 + cos𝜙1sin𝜙2cos𝛷 sin𝜙2sin𝛷
−cos𝜙1sin𝜙2 − sin𝜙1cos𝜙2cos𝛷 −sin𝛷1sin𝜙2 + cos𝜙1cos𝜙2cos𝛷 cos𝜙2sin𝛷

sin𝜙1sin𝛷 −cos𝜙1sin𝛷 cos𝛷
}   (23) 

 

S3. Detector parameter optimization 

The Laue detector parameters include the rotation vector 𝐑 and translation vector 𝐏, both of which contain 

three degrees of freedom. The translation vector 𝐏 gives the distance between the center of the detector and 

the origin in the laboratory frame. The rotation vector 𝐑 is the Rodriguez rotation vector, which rotates the de-

tector from the origin to its actual location during the measurement. We determined the translation vector to 

be 𝐏 = [0, −25, −65]. The rotation vector 𝐑 was calculated using the rotation matrix and the Rodriguez rotation 

formula (Pateras et al., 2020; Koks, 2006). We determined the initial values of the rotation vector 𝐑 =

[2.3, 0.0, 2.2]. The values are only a rough estimation and need to be optimized. With the orientation of the Sili-

con substrate and the initial 𝐏 and 𝐑, we used the forward-model to generate the Laue pattern shown in Figure 

S2 (a). 

We then optimized the detector parameters by combining the Nelder-Mead algorithm with a grid search 

method. For the definition of the cost function, we used the forward model to simulate Laue diffraction, com-

pared the simulation and experiment data, and calculated the average distances between the extracted peaks in 

the experiment data and corresponding nearest peak positions in the forward model. Providing the segmenta-

tion result from the experimentally measured Laue pattern of the substrate, we could locate the center-of-mass 

for each peak. We created a list of Miller indices for each experimentally measured Bragg peak and then found 

the nearest peak predicted by the forward model. The cost function calculates the average distance between 

the experimentally measured Bragg peaks and the corresponding nearest peaks predicted by the forward 

model. 
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Although Nelder-Mead tends to optimize the objective function fairly fast, within tens of iterations, it can be 

trapped in valleys around local minima. Considering this, we decided to set a few initial points for the optimiza-

tion. More specifically, we picked three different values as the initial point for each of the three components of 

the translation vector 𝑃0. We were able to find the optimal value of the 𝑃0 component of the translation vector 

and with the same procedure determined the values of the other components of the translation vector 𝐏 and 

rotation vector 𝐑. Combining Nelder-Mead with a grid search method can solve the problem of multi-variable 

optimization, shown before and after in Figure S2. The values of all six components of the two vectors are listed 

in Table S1. 

 

Figure S2 (a) A Laue diffraction pattern from silicon substrate and simulated Laue diffraction before detector 

parameter optimization; (b) The same diffraction pattern and simulated Laue diffraction after detector parameter 

optimization. 

Table S1 Detector parameters before and after optimization 

 Before Optimization After Optimization 

R [radians] [2.3, 0.0, 2.2] [2.23, −0.009, 2.205] 

P [mm] [0, −25, −65] [−0.653, −25.946, −68.220] 
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S4. Demonstration of the twiddle algorithm on parameter optimization for rolling ball algorithm  

Twiddle algorithm (https://martin-thoma.com/twiddle/) is used to search for the parameter in rolling ball algo-

rithm (RB). A twiddle algorithm is a generic algorithm for optimizing loss functions for single values. Compared 

with gradient descent method, it is superior regarding to the time complexity, because of no calculation require-

ment for the second order derivative.  

The input of twiddle algorithm is an objective function 𝑓(𝑥) that calculates the gradient checkpoint at 𝑥 (deriva-

tive 𝜕𝐹 𝜕𝑟⁄  in 2.3 Image processing). At the beginning of twiddle refinement, we run RB algorithm with 𝑥0 (the 

initial point for optimizing): 𝑓(𝑥)∗ = 𝑓(𝑥0). We set range 𝑥𝑟𝑎𝑛𝑔𝑒 for the radius, and the 휀 as tolerance to deter-

mine the convergence of the gradient. Then we add initial 𝑑𝑥 (increment of radius) to 𝑥, and re-calculate the 

objective function 𝑓(𝑥); if there was some improvement (𝑓(𝑥) <  𝑓(𝑥)∗), then we increase the increment of 

radius 𝑑𝑥 ∗= 1.1 and update the optimal function value 𝑓(𝑥)∗ = 𝑓(𝑥). Otherwise, we try to decrease the radius 

𝑥, and this means 𝑥−= 2 ∗ 𝑑𝑥, recalculate the 𝑓(𝑥) and compare  𝑓(𝑥) and  𝑓(𝑥)∗ again. If there is some im-

provement, then this means we should decrease 𝑥. Thus, we adaptively changed the decrement (𝑑𝑥 ∗= 1.05) 

based on the performance of new parameters. If there is no improvement, this means neither increment nor 

decrement improves the searching, the step size might simply be too big. Therefore, we adjust the extent of in-

crement/decrement 𝑑𝑥 ∗= 0.95 and iteratively run the same procedure. The whole process terminates only 

when 𝑑𝑥 reaches a set threshold (usually 0.1) or radius 𝑥 is out of range 𝑥𝑟𝑎𝑛𝑔𝑒 (usually 10 pixels ~ 150 pixels). 

https://martin-thoma.com/twiddle/
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Figure S3 Pseudo-code of twiddle algorithm for parameter optimization. 

  

S5.  Grain size distribution 

The grain size distribution is generated by MTEX (https://mtex-toolbox.github.io/ShapeParameters.html).  The 

input is sample EBSD data set and we remove all not indexed pixels and reconstruct grains followed by compu-

ting the number of pixels that belong to a certain grain. The grain area represents the actual area measured in 

𝜇𝑚2. We analyze the distribution of grains by grain area using a histogram plotted in Figure S4. 

 

Figure S4 Grain sizes of Au crystals (unit of grain area: 𝜇𝑚2). 
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S6.  An example of using rolling ball algorithm with different radius 

 

Figure S5 a: A raw image. b: The background image generated by rolling ball algorithm with radius 30. e. The 

binary image after background (b) subtraction, and yellow points indicate substrate peaks. c: The background im-

age generated by rolling ball algorithm with radius 90. f. The binary image after background (c) subtraction, and 

yellow points indicate substrate peaks. d: The background image generated by rolling ball algorithm with radius 

150. g. The binary image after background (d) subtraction, and yellow points indicate substrate peaks. Comparing 

Figure S5 e,f and g, radius 90 is the best because all substrate peaks are included and segmented with less false 

positive peaks.  
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S7.  High-resolution SEM images for crystals 

 

 

Figure S6 (a) A SEM image of the patch of crystals scanned by pink beam. (b) The crystal at the middle of this 

patch. (c) The crystal at the right of this patch. 

 

S8. Determination of the radius parameter of RBA 

The ball radius is the only algorithmic parameter in RBA but its value depends on the background distribution 

found in each experimentally acquired image. The ball radius value controls which features are left out and 

which are kept. Accordingly, a routine for optimizing the RBA radius for each acquired Laue pattern was estab-

lished and is described below. The radius is selected to be appreciably wider than any of the apparent diffraction 

spots that resemble and could be falsely classified as Bragg peaks. However, the ball radius is small enough to 

follow the smoothly varying background and correctly subtract it. The twiddle algorithm, Appendix D (Thoma, 

2014), is used to find the best RBA radius. The objective or cost function was chosen to be the derivative of the 

fraction of pixels whose intensities are below a threshold value in the corrected image (raw image with back-

ground subtracted) with respect to the tested radius. When the radius value is too small, the derivative 𝜕𝐹 𝜕𝑟⁄  is 

large because increasing the radius rapidly increases the number of peaks. According to the distribution of pixel 

intensities, most false positives are low in intensity. When the radius is less than two pixels, the rolling ball en-

ters the interior of all false positives. In this situation, a small increase in radius will lead the ball to fail to enter a 

large number of low-intensity false positives. Therefore, there is a rapid increase of pixels classified as peaks 

with intensities over 10 counts/pixel in the corrected image. The derivative 𝜕𝐹 𝜕𝑟⁄  reaches its minimum point 

where the substrate peaks, each consisting of many high-intensity pixels, are included as peaks. At this point, 

further increases in radius do not rapidly increase the number of peaks found. Thus, more peaks are found that 
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are false positives (with respect to nanocrystal peaks) and the derivative increases. Thus, there is a plateau (min-

imum) in the number of peaks with respect to the radius that allows the objective function to identify the best 

value.   

The initial value of radius was 20 and the allowed range of radii values is [10, 200]. The tolerance (the number 

used to determine when optimization has converged to a sufficiently good score) is 1 pixel. Finally, the best ra-

dius returned by the optimization for the current dataset was 90 pixels. To justify that 90 is a reasonable num-

ber, Fig. 4(b) shows the number of pixels whose intensities are above a threshold value in the corrected image 

with radii ranging from 0.1 to 300 pixels. The fraction of pixels F whose intensity is larger than the threshold 

value 10 and the derivative ∂F⁄∂r of the fraction of pixels with respect to the tested radius is calculated and 

shown in Fig. 4(b). The substrate peaks were then segmented from the residual noise through a global threshold 

τ whose value was determined by minimizing ∂F⁄∂r, as in the RBA radius optimization. Using a cluster identifica-

tion algorithm (Virtanen et al., 2020), the location of all intensity clusters (substrate peaks) was identified. 

 

The final values obtained from different initial guesses are not consistent. As an illustration, we compared the 

outcomes determined from varying initial values of 𝑃2, where the initial value ranges from -20 to -30 mm in in-

crements of 2. For each initial value, we generated one Laue pattern and chose ten Bragg peaks from each pat-

tern. We compared these peaks with experimentally measured peaks and then computed the average distance 

between the extracted and corresponding nearest peak positions provided by the forward model for each Laue 

pattern. This average distance is known as the loss, which can be optimized using the Nelder-Mead algorithm. 

 

S9. Loss and a standard deviation for the results determined from different starting guesses for 𝑷𝟐. 

The final values obtained from different initial guesses are not consistent. As an illustration, we compared the 

outcomes determined from varying initial values of  𝑃2, where the initial value ranges from -20 to -30 mm in in-

crements of 2. For each initial value, we generated one Laue pattern and chose ten Bragg peaks from each pat-

tern. We compared these peaks with experimentally measured peaks and then computed the average distance 

between the extracted and corresponding nearest peak positions provided by the forward model for each Laue 

pattern. This average distance is known as the loss, which can be optimized using the Nelder-Mead algorithm. 

The subsequent table displays the loss for the results obtained from different starting guesses for 𝑃2, and the 

optimized values of 𝑃1, 𝑃2, and 𝑃3 for the corresponding initial guesses. The variance (𝜎2) can be calculated us-

ing the following equation, where 𝜎 is the standard deviation. 

𝜎2 =
1

𝑁
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

= 0.678 ⇒ 𝜎 = 0.823 

 

Here each of the independent observations 𝑥𝑖 is the average distance calculated from the ten peaks of one Laue 

pattern defined as loss, and �̅� is the average loss value for the six Laue patterns (N=6). Thus, for the tabulated 

values below we have an average loss value of 1.4 ± 0.8 pixels. 
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       𝑃2 (initial 

point) 

-20 -22 -24 -26 -28 -30 

 𝑃1 -0.613 -0.588 -0.596 -0.617 -0.614 -0.626 

𝑃2 -21.548 -23.282 -25.685 -26.390 -27.426 -28.972 

𝑃3 -65.972 -65.777 -68.444 -65.870 -66.271 -69.133 

Loss 2.745 1.724 0.128 0.829 1.182 1.799 

 

S10. Pole figures of crystals from EBSD and Laue 

In order to illustrate the randomness of the misorientations, we show multiple examples of combined 

pole figures (PFs) of different crystals from EBSD (blue points in the figure below) and Laue (orange 

points in the figure below) and find that the discrepancy of orientations (misorientations) from the two 

analysis lacks any systematic pattern, i.e., there is no systematic offset between the Laue and EBSD 

measurements of orientation. We plot and show all 19 PFs below for illustration.   

 

 

Figure S7 Pole figures from one grain (Cryst.ID = 1). 

 

Figure S8 Pole figures from one grain (Cryst.ID = 2). 
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Figure S9 Pole figures from one grain (Cryst.ID = 3). 

 

Figure S10    Pole figures from one grain (Cryst.ID = 4). 

 

Figure S11    Pole figures from one grain (Cryst.ID = 5). 

 

Figure S12    Pole figures from one grain (Cryst.ID = 6). 
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Figure S13    Pole figures from one grain (Cryst.ID = 7). 

 

Figure S14    Pole figures from one grain (Cryst.ID = 8). 

 

Figure S15    Pole figures from one grain (Cryst.ID = 9). 

 

Figure S16    Pole figures from one grain (Cryst.ID = 10). 
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Figure S17    Pole figures from one grain (Cryst.ID = 11). 

 

Figure S18    Pole figures from one grain (Cryst.ID = 12). 

 

Figure S19    Pole figures from one grain (Cryst.ID = 13). 

 

Figure S20    Pole figures from one grain (Cryst.ID = 14). 
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Figure S21    Pole figures from one grain (Cryst.ID = 15). 

 

Figure S22    Pole figures from one grain (Cryst.ID = 16). 

 

Figure S23    Pole figures from one grain (Cryst.ID = 17). 

 

Figure S24    Pole figures from one grain (Cryst.ID = 18). 
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Figure S25    Pole figures from one grain (Cryst.ID = 19) 

 


