

Volume 30 (2023)

Supporting information for article:

Assessing an aqueous flow cell designed for *in-situ* crystal growth under X-ray nanotomography and effects of radiolysis products

Ke Yuan, Vitalii Starchenko, Nikhil Rampal, Fengchang Yang, Xianghui Xiao and Andrew G. Stack

Materials	Brand
Peak tube	Cole-Parmer (1/32" ID)
Kinematic mount	MKS Newport, M-BK-1A-T
Peak tube adaptor	Cole-Parmer
Teflon tube	McMaster-Carr (1/32" ID)
Quartz glass capillary	Charles Supper Company, 100 µm diameter round quartz tube, 10 µm wall thickness
Kapton film	McMaster-Carr (127 µm thickness)

Table S1Materials used for the construction of the flow cell.

S1. Estimation of does rate from water

 $\rho = 0.012$ water/Å² is the number of water molecules per unit area estimated from 0.033 water/Å³ (number density of water) integrated over a thickness (d) of Ro-o, which is the liquid water O-O distance of 2.79 Å obtained from a typical neutron radial distribution function data (ref). $h = 1.2 \ \mu\text{m}$ is the depth of the photoelectrons being generated based on the continuous-slowing-down approximation. $\sigma(water) = 7.43 \ \text{cm}^2/\text{g}$ (XCOM NIST database) is the photoelectron cross-section of water and S (water) = 24.48 MeV cm²/\text{g} (ESTAR NIST database) is the stopping powder of water at 9 keV. Dose rate $J(water) = 2.81 \times 10^4 \text{ Gy/s}$.

Figure S1 Estimation of surface area of barite illuminated by the X-ray beam. The binary image shown in Fig 2a was projected onto the quartz surface of an area of 827 μ m², yielding a 4.16% of the total field of view covered by barite.

Figure S2 Dissolution rates and associated pHs as a function of the accumulated exposure time. pH values were calculated based on the observed dissolution rates according to ref [50]. The barite dissolution rate $r = k(\Omega^{0.2}-1)$, where r is the dissolution rate in mol/m²/s, k is the rate constant, and Ω is the saturation state in $[Ba^{2+}][SO_4^2]/K_{sp,barite}$. For simple estimation, we assume the solution saturation state close to the barite surface $\Omega = 0$ in our experiments, therefore, the calculated dissolution rate r will equal to the rate constant k. Two different dissolution rates were estimated. Dissolution rate 1 was calculated based on data from 1 min to 8 min and the dissolution rate 2 was calculated based on data from 8 min to 12 min in Fig. 3a.