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1. Determining CPMV Geometrical Radius R0 from 1D SAXS 

The calculation of 1D SAXS intensity was derived from T. Rieker et al., Langmuir 1999, 15, 638-
641. According to T. Rieker et al., The scattering intensity for a colloidal suspension can be written as: 

I(q) ∝ 𝑁𝑁𝑁𝑁(𝑞𝑞)𝑃𝑃(𝑞𝑞) 

Where 𝑁𝑁 is the number of colloidal particles, 𝑃𝑃(𝑞𝑞) is the form factor which describes scattering profile 
from individual particles, and 𝑁𝑁(𝑞𝑞) is the structure factor which describes the spatial distribution of the 
particles. For the CPMV suspension discussed in the main manuscript, at a weight fraction of 10 mg/mL 
and a dry density of 1.4 g/mL, the volume fraction of CPMV is 0.7%. With very dilute colloidal systems, 
S(q) approaches 1, leading to I(q) ∝ 𝑃𝑃(𝑞𝑞). 

For dilute colloidal suspension with particle size distribution 𝐷𝐷(𝑅𝑅,𝑅𝑅0,𝜎𝜎), I(q) is expressed as: 
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Here, 𝑎𝑎 is the spatial scale of the colloidal particle, 𝐷𝐷(𝑎𝑎,𝑎𝑎0,𝜎𝜎) indicates the size distribution of the colloids. 
Specifically, for spherical particles with a Gaussian size distribution, we have: 

𝑃𝑃(𝑞𝑞,𝑅𝑅) = 𝑉𝑉2 �
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Where 𝑅𝑅 is the geometric radius of the particle, 𝑉𝑉 = 4
3
𝜋𝜋𝑅𝑅3 is the volume of the spherical particle, 𝑅𝑅0 and 

𝜎𝜎 are the mean and standard deviation of the Gaussian size distribution. Therefore: 

I(q) = 𝐼𝐼0 � 𝑅𝑅6 ∙ �
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Here 𝐼𝐼0 is a scaling coefficient with the same unit as the absolute scattering cross-section I(q) determined 
from the experiment. 

The integration was performed numerically using scipy.integrate.quad API from scipy library 
in Python. The lower and upper limit of the integration was set to 0 and 100 nm for realistic purposes. It 
was found that 𝑅𝑅0 = 13.0 nm and 𝜎𝜎 = 1.2 nm provide the best fit to the experimental data as visually 
identified from Fig. 2 in the main manuscript. 

 

 

 



2. Calibration of Radiation Damage 

With the current coherent x-ray flux at station 8-ID-I of APS (1×1010 photons per second over a 10 
μm × 10 μm spot), XPCS measurement on each CPMV sample condition (Fig. 3 and 4 in the main 
manuscript) requires ~10,000 repeats of 4 second measurements (2 second exposure and 2 second data 
transfer with x-ray shutter closed) that spans over 11 hours. However, the complete decorrelation of g2 to 
baseline at longer delay times (Fig. 3) suggests that the collection of CPMV that are exposed to x-rays have 
completely moved out the beam by the end of each 2 second measurement the due to Brownian motion, so 
accumulative radiation damage is unlikely. As an additional precaution, each repeating measurement was 
taking at a spot separated by at least the size of the beam from the previous measurement.  

For calibration of radiation damage within individual measurement, each 100,000-frame measurement is 
divided into sub-measurements containing a portion of the 100,000 frames, and the SAXS and XPCS 
analysis from the sub-measurements are checked for inconsistencies. Fig. S1 shows the 1D SAXS analyzed 
from every 10,000 frames over a single 100,000 frame measurement. Fig. S2 shows XPCS results from the 
first 50,000 frames (blue markers) and the second 50,000 frames (orange markers) and averaged over 
14,328 repeats as in Fig. 3 of the main manuscript. No observable variation beyond the statistical fluctuation 
of the measurement has been observed in either SAXS and XPCS, indicating that radiation-induced effect 
does not contribute significantly to the conclusions derived from the measurement. 

 

Fig. S1: SAXS from every 10,000 detector frames within a single 100,000-frame continuous acquisition at 
52 kHz frame rate. 



 

Fig. S2: Averaged XPCS results (14,328 repeats, Fig. 3) from the first 50,000 detector frames (blue) and 
the second 50,000 detector frames (orange) within 100,000-frame continuous acquisition. 

 

3. Multitau Algorithm 

Originally developed for DLS, multitau algorithm (Cipelletti and Weitz, Rev. Sci Instrum. 70 3214 
1999) is used in XPCS when the dynamics does not evolve significantly within the duration of the 
measurement, i.e., when the system is at equilibrium or when the system is evolving but the time scale of 
the evolution is much longer than the duration of the measurement. In these scenarios, the intensity 
autocorrelation function 𝑔𝑔2 is assumed to be invariant of the measurement time 𝑡𝑡 and only dependent upon 
the delay time 𝜏𝜏 between the frames. Fig. S3 demonstrates this concept with a simplified data set containing 
20 detector frames instead of 100,000 as in the manuscript. Here, 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡) is the photon counts registered at 
pixel (𝑖𝑖, 𝑗𝑗) at a given experimental time 𝑡𝑡. Time average of the multiplication of 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡) with the translated 
version of itself, i.e., 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡 + 𝜏𝜏), yields 𝐺𝐺2(𝜏𝜏) (hence the term ‘intensity autocorrelation’), while the time 
average of 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡) and 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡 + 𝜏𝜏) yields 𝐼𝐼𝐼𝐼(𝜏𝜏) and 𝐼𝐼𝑃𝑃(𝜏𝜏). Binning 𝐺𝐺2, 𝐼𝐼𝐼𝐼 and 𝐼𝐼𝑃𝑃 over regions of interest 
(ROI) on the detector according to the ROIs used in the azimuthal average in Fig. 2, and then performing 
the division in Eq. 1 of the main manuscript, leads to 𝑔𝑔2(𝜏𝜏,𝑄𝑄). This 𝑔𝑔2 is further binned by approximately 
a factor of 10 in 𝑄𝑄 over larger ROIs to improve the statistics, as detailed in the main manuscript. 

In multitau, assuming 𝑔𝑔2 decays continuously over 𝜏𝜏, the level of correlation at larger 𝜏𝜏 is insensitive to the 
fluctuations at smaller 𝜏𝜏. As a result, for evaluation of 𝑔𝑔2 at larger delay time 𝜏𝜏, a recursive binning method 
is used, as demonstrated in Fig. S4. For an XPCS data set with N frames, with the recursive binning, the 
amount of computational resource required for both calculating and visualizing the dynamics scales with 



𝑁𝑁 log10 𝑁𝑁  instead of 𝑁𝑁2 , which makes a tremendous difference if 𝑁𝑁  is very large (e.g. 100,000). The 
recursive binning also significantly improves the statistics at larger 𝜏𝜏. 

 

 

Fig. S3: Evaluation of 𝐼𝐼𝑃𝑃, 𝐼𝐼𝐼𝐼 and 𝐺𝐺2 at pixel (𝑖𝑖, 𝑗𝑗) from the time series of the intensity 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡) based on Eq. 
1 in the main manuscript. The dashed lines indicate the range of the time average. The maximum number 
of photon counts per frame at a pixel is 3 (bit depth of 2) for XSPA-500k at 52 kHz frame rate. In the event 
that a pixel registers 4 photons within a single frame, 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑡𝑡) rolls back to 0. However, since the probability 
of a correlation event involving an overflowed pixel is commensurate with 𝑃𝑃15 where 𝑃𝑃1 is the probably 
of a single photon event, for typical biological samples with a scattering intensity below 1×10-3 
photon/pixel/frame at 52 kHz frame rate given the current level of coherent flux at 8-ID, the impact of count 
overflow on 𝑔𝑔2 is negligible. 

 

 

Fig. S4: Example of recursive binning method in multitau algorithm at 𝑑𝑑𝑑𝑑𝑑𝑑 = 4 (delay per level). For 𝜏𝜏 ≤
𝑑𝑑𝑑𝑑𝑑𝑑, no binning is required (Fig. S4[a]). For 𝜏𝜏 > 𝑑𝑑𝑑𝑑𝑑𝑑, frame binning level starts from 0 and correlation is 
evaluated at 𝑑𝑑𝑑𝑑𝑑𝑑 + 1 ≤ 𝜏𝜏 ≤ 2 × 𝑑𝑑𝑑𝑑𝑑𝑑  (Fig. S4[b]). After 𝜏𝜏 reaches 2 × 𝑑𝑑𝑑𝑑𝑑𝑑 , the frames are binned by a 
factor of 2 (Fig. S4[c]) and the same process in Fig. S4[b] is repeated with binned frames (Fig. S4[d]). This 
iterates till 𝜏𝜏 becomes larger than the total length of the binned frame sequence. 


