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S1. Statistics on number of publications 

 

Figure S1 Number of publications mentioning ‘ASAXS’ and publications mentioning ‘ASAXS and 

proteins’ from 1980 to 2020 based on publications search at https://www.dimensions.ai/products/free/. 

  

https://www.dimensions.ai/products/free/


 

 

J. Synchrotron Rad. (2021). 28,  doi:10.1107/S1600577521003404        Supporting information, sup-2 

S2. The elements used as cofactors by enzymes 

 

 

Figure S2 The elements used as cofactors by enzymes. The height of each column represents the 

proportion of all enzymes with known structures using the respective metal. Adapted from (Waldron 

et al., 2009). 
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S3. Energy server calibration and experiment control 

S3.1. Energy offset 

Beamline interface for the user experiment control is shown in Figure S3. For the energy 

adjustment, the motor positions are computed for each energy and fine scans around the theoretical 

positions can be used to optimize the beam flux. 

 

 

Figure S3 Beamline experiment control interface (BECQUEREL) in ASAXS mode. A) Panel 

represents beamline parameters and status of the measurement. B) Panel represents sample changer 

outline with the sample table and loaded scripts for ASAXS data collection. C) Panel shows the queue 

of measurements and panel with energy setting scripts. Example of the script syntax is listed in SI 

section S1.4. 

To calibrate the energy setting procedure of the double-crystal monochromator (DCM offset), 

chromium and copper foils are moved into the beam path and their absorption is measured. The 

measurements of the absorption edges allow to correct for a possible mechanical offset of the Bragg 

axis of the DCM. Transmission X-ray measurements of solutions with salts containing relevant ions 

such as iron or bromine, can also be conducted directly in the SAXS cell for fine energy calibration.  

In addition to the Bragg angle, the undulator gap, the distance between the DCM crystals (perp) and 

the second crystal alignment (pitch) are adjusted such that the trajectory of the outcoming beam is 

kept constant for all energies and no further adjustment of the downstream optical elements is 

required. 
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S3.2. Undulator gap 

Monochromatic X-rays of the P12 BioSAXS beamline are sourced from the controllable-gap 

low-divergence U29 undulator of PETRA III (Schöps et al., 2016; Tischer et al., 2007). Its known 

dependence between energy of the main harmonics of undulator and its magnetic properties and storage 

ring properties is given as: 

ε[keV] =
0.950E2[GeV]n

(1 + K2)λ0[cm]
 (S1) 

 

where K - magnetic parameter, λ0 - magnetic period of the undulator, E - storage ring energy, 

n - undulator harmonics (n=1 or n=3 in for P12). The magnetic parameter reads as: 

K =
eB0λ0

2πmc2
= 0.934B0λ0 (S2) 

 

where λ0 - undulator magnetic period, B0 - undulator magnetic field, e - electron charge, m - 

electron mass, c - speed of light. 

For PETRA III U29 undulator, it is  λ0 =2.9cm and the storage ring energy E=6 GeV. 

The magnetic field B0 can be empirically estimated as follows (Walker, 1996): 

B0 = aexp (−b
G

λ0
− c (

G

λ0
)

2

) (S3) 

 

where G - undulator gap, λ0 - magnetic period of the undulator, a, b, c - empirical parameters 

for the particular undulator, depending on the material of the magnets and arrangement. 

From (S1) we can express the magnetic parameter K as follows: 

  

K = √
1898E2n

ϵλ0
− 2 (S4) 

After substitution (S3) to (S2) and using equation (S4) we obtain following quadratic equation: 

c

λ0
2 G2 +

b

λ0
G − A = 0 (S5) 

 

where  

A = ln (
1

0.934aλ0

√
1898E2n

ϵλ0
− 2)  

 

Solving this equation, one obtains the dependence of the undulator gap G [𝜇𝑚] at the given 

energy ϵ [keV]: 
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G = λ0 (
−b − √b2 + 4Ac

2c
) (S6) 

The second root of the equation (S5) does not fit experimental data. Fitting this equation to the 

experimental dependence of the undulator gap at different energy settings yield empirical parameters a, 

b, c of the magnetic structure of the undulator and known harmonic 𝑛.  

 

Figure S4  Beamline undulator gap positions measured at different energies (circles) for the 1st and 

3rd harmonics. Dashed lines represent fit of equation (S6). Obtained parameters allow one to estimate 

target undulator gap at any predefined photon energy for beamline tuning. 

Figure S4 shows the fitted undulator gap motor position vs energy. The obtained parameters 

are used for the preliminary setting of the undulator gap prior to the experiment. Monitoring of fitted 

parameters are available in order to track down changes in gap settings due to the loss of magnetization 

in undulator. 

S3.3. Distance between crystals (Perp) 
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Figure S5 Geometrical scheme of double-crystal monochromator to illustrate the computation of 

perp. 

Vertical distance between incoming and outgoing beams h (Figure S5) can be determined using 

following relation: 

h = 2zcos(θB) (S7) 

where θB - Bragg angle corresponding to the given energy via Bragg’s law, z - distance between 

parallel crystal planes. It can be compensated by vertical translation of the crystals in perpendicular 

direction to each other. Energy selection can be achieved by changing the Bragg angle θB which is 

corresponding to the energy with the well-known Bragg’s law. In practical units it can be rewritten as: 

2dsin(θB) =
12398

E[eV]
 (S8) 

 

We need to account for the change of the distance between crystals in response to change of the 

Bragg angle in order to have the beam at the same vertical position. Assume that we slightly changed 

the energy (Bragg angle) than this corresponds to the following change in vertical distance h between 

the beams: 

δh

δθB
= −2zsinθB (S9) 

 

Substitution of z from equation (S7) into equation (S9) gives: 

δh

h
= −tgθBδθB (S10)  

 

Integration of both parts gives: 

ln(h) = ln cosθB+const (S11) 

 

or 
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h = h0ln(cosθB) (S12) 

 

Therefore, overall compensation of the vertical change between beam positions can be written 

as: 

h = h0(1 + ln (cosθB)) (S13) 

 

 

Figure S6 Measured DCM relative perp motor position (circles) at different photon 

energies. Dashed line represents fit of equation (S13) therefore allowing to calculate optimal perp 

position of the DCM at an arbitrary energy value. 

Equation (S13) was used as a basis for calculation and finding parameters for preliminary distance 

setting for the DCM. Resulting fit is shown on Figure S6, which emphasizes that correct setting of the 

perp motor position is more important for the lower energy range than for the higher energy range. 

S3.4. Pitch of the second crystal. 

Pitch motor of the second crystal is used to ensure the parallelism of two crystal substrates with 

respect to each other. Slight error in parallelism can cause significant change in the intensity after 

monochromator. The angle variation should be within the Darwin width of the given set of crystals 

which is in turn energy-dependent. For preliminary setting of the pitch a cubic polynomial function is 

used. More precise setting is done via additional scan using piezo-drives with high precision.  

S3.5. Example of the script that can be run by user/beamline scientist to perform the calibration of the 

energy server. 

from _commands import * 
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import PETRAIII.P12.OpticsHutch.DoubleCrystalMonochromator as DCM 

import PETRAIII.P12.OpticsHutch.Slit1 as Slit1 

import PETRAIII.P12.OpticsHutch.QBPM1 as QBPM1 

import PETRAIII.P12.OpticsHutch.QBPM2 as QBPM2 

import PETRAIII.P12.ExperimentalHutch.QBPM3 as QBPM3 

import PETRAIII.P12.ExperimentalHutch.Cage.BeamStop as BeamStop 

import PETRAIII.P12.ExperimentalHutch.BeamConditioningUnit.Attenuator as 

Attenuator 

import PETRAIII.P12.ExperimentalHutch.BeamConditioningUnit.Diode2 as Diode2 

import PETRAIII.P12.ExperimentalHutch.BeamConditioningUnit.Diode1 as Diode1 

import 

PETRAIII.P12.ExperimentalHutch.BeamConditioningUnit.ExperimentalShutter as 

FastShutter 

import PETRAIII.P12.OpticsHutch.QBPM1 as QBPM1 

import PETRAIII.P12.OpticsHutch.DoubleCrystalMonochromator.Perp as Perp 

import PETRAIII.P12.OpticsHutch.DoubleCrystalMonochromator.Pitch as Pitch 

import PETRAIII.P12.FrontEnd.Undulator as Undulator 

 

 

 

import numpy as np 

import time 

import datetime 

 

 

 

def Bragg_from_Energy_Si111(energy): 

    En_lambda_const = 6.62606896e-34*299792458/1.60217687e-19*1 

    return 

round(np.arcsin(En_lambda_const/(energy*2.0*3.1356))*180.0/np.pi,7) 

 

 

def getPerp_from_Energy(energy): 

  

    p0=-13.264554890940 

    p=p0*(1.0+np.log(np.cos(Bragg_from_Energy_Si111(energy)*np.pi/180))) 

  

    return p 

 

 

def Energy_from_Bragg_Si111(bragg): 
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    En_lambda_const = 6.62606896e-34*299792458/1.60217687e-19*1 

    energy = En_lambda_const/(2.0*3.1356*np.sin((bragg)*np.pi/180.0)) #eV 

  

    return energy 

 

 

def getUndulatorGap_from_Energy(energy): 

  

    energy = energy/1000.0 #input energy in eV 

    En_switch = 11  # Switch between the harmonics (energy, in keV) 

  

    E_ring = 6 #Ring energy in GeV 

    lamb = 2.9 #Undulator period in cm 

  

  

    if energy<En_switch: 

  

        #1st harmonics 

  

        n_harm = 1 # harmonic number 

        a=2.1514765 

        b=-0.2781146 

        c=-0.00504 

 

        

A=np.log(1.0/(a*0.934*lamb)*np.sqrt((1.898*E_ring**2*n_harm)/(energy*lamb)-

2.0)) 

  

        Gap_1st_harm =  lamb*((-b-np.sqrt(b**2+4.0*A*c))/(2*c)) 

  

        return Gap_1st_harm*1000 #in mm 

  

  

    if energy>=En_switch: 

  

        #3rd harmonics 

  

        n_harm = 3 # harmonic number 

        a=2.515237 

        b=-0.34108303 
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        c=-0.0001158347 

 

        

A=np.log(1.0/(a*0.934*lamb)*np.sqrt((1.898*E_ring**2*n_harm)/(energy*lamb)-

2.0)) 

  

        Gap_1st_harm =  lamb*((-b-np.sqrt(b**2+4.0*A*c))/(2*c)) 

  

        return Gap_1st_harm*1000 #in mm 

 

 

def getPitch_from_polynomial_fit(energy): 

  

    a0 = -0.451677833328 

    a1 = 1.49883864339e-06 

    a2 = -5.24596874534e-11 

 

    pitch = a0+a1*energy+a2*energy**2 

  

    return pitch 

 

 

def SetEnergy_P12_with_fine_scan(energy,MONITOR,**kwargs): 

     

    dt = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") 

     

    AngularBraggOffset = -0.4881232077 

    BraggTheory = Bragg_from_Energy_Si111(energy) 

    BraggMotorPosition = BraggTheory+AngularBraggOffset 

     

     

    theory_gap = round(getUndulatorGap_from_Energy(energy),0) 

    theory_perp = getPerp_from_Energy(energy) 

    theory_pitch_from_polynomial_fit = getPitch_from_polynomial_fit(energy) 

     

     

    DCM.setBraggAngle(BraggMotorPosition) 

    Undulator.setGapWidth(theory_gap)    

    Pitch.setVelocity(0.1) 

    Pitch.moveAbsolute(theory_pitch_from_polynomial_fit) 

    Perp.setVelocity(0.1) 
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    Perp.moveAbsolute(theory_perp) 

     

     

     

    #Fine undulator scan 

    #==================== 

     

    prefix = kwargs["Log Directory"] + 

"/"+dt+"_Undulator_Gap_vs_QBPM1_QBPM2_QBPM3_Diode2_EnergyServer_"+str(energ

y) 

    Undulator.scanGapWidth(theory_gap-300,theory_gap+600,25,MONITOR,prefix) 

    Undulator.fitPdf(prefix) 

    Undulator.setGapWidthPercentile(prefix,0.500) 

     

    #Fine perp scan 

    #=============== 

         

    Perp.setVelocity(0.1) 

    prefix = kwargs["Log Directory"] + 

"/"+dt+"_Perp_vs_QBPM1_QBPM2_QBPM3_Diode2_EnergyServer_"+str(energy)     

    Perp.scanAbsolutePosition(theory_perp-

1.0,theory_perp+1.0,0.05,MONITOR,prefix) 

    Perp.fitPdf(prefix) 

    Perp.setAbsolutePositionPercentile(prefix,0.500) 

     

     

     

    #Fine pitch scan 

    #=============== 

     

    Pitch.setVelocity(0.1) 

    prefix = kwargs["Log Directory"] + 

"/"+dt+"_Pitch_vs_QBPM1_QBPM2_QBPM3_Diode2_EnergyServer_"+str(energy)     

    Pitch.scanAbsolutePosition(theory_pitch_from_polynomial_fit-

0.05,theory_pitch_from_polynomial_fit+0.05,0.001,MONITOR,prefix) 

    Pitch.fitPdf(prefix) 

    Pitch.setAbsolutePositionPercentile(prefix,0.500) 
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def experiment(*args, **kwargs): 

 

# ================ Description ==================================== 

# This script goes through "Energy_list" and do a fine scans  

# of undulator gap, perp and pitch around approximate positions. 

# ================================================================= 

 

# Chose a list of intensities to be written into the file. 

    

    MONITOR = 

[QBPM1.TotalIntensity,QBPM2.TotalIntensity,QBPM3.TotalIntensity,Diode2.Inte

nsity] 

    # In eV 

    Energy_list = 

[6000,6500,7000,7500,8000,8500,9000,9500,10000,10500,11000,11500,12000,1250

0,13000,13500,14000,14500,15000,15500,16000,16500,17000,17500,18000,18500,1

9000,19500,20000] 

 

     

    # Reference energies 

    #Cr_Edge = 5989 

    #Energy_list = [Cr_Edge] 

     

    #Cu_Edge = 8979 

 

    #Energy_list = [Cu_Edge] 

     

    for energy in Energy_list: 

        SetEnergy_P12_with_fine_scan(energy,MONITOR,**kwargs) 

 

    SetEnergy_P12_with_fine_scan(10000,MONITOR,**kwargs) 
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S4. List of elements and absorption edges 

Table 1 Elements and their corresponding absorption edges (in eV) from 3500 to 20 000 eV 

Adapted from https://xdb.lbl.gov. 

Element K   Element LI LII LIII   Element LI LII LIII 

K 3608.4   Pd 3806 3524     Lu 10890 10349 9244 

Ca 4038.5   Ag 3806 4238     Hf 11271 10739 9561 

Sc 4492   Cd 4018 3727 3538   Ta 11682 11136 9881 

Ti 4966   In 4238 3938 3730   W 12100 11544 10207 

V 5465   Sn 4465 4156 3929   Re 12527 11959 10535 

Cr 5989   Sb 4698 4380 4132   Os 12968 12385 10871 

Mn 6539   Te 4939 4612 4341   Ir 13419 12824 11215 

Fe 7112   I 5188 4852 4557   Pt 13880 13273 11564 

Co 7709   Xe 5453 5107 4786   Au 14353 13734 11919 

Ni 8333   Cs 5714 5359 5012   Hg 14839 14209 12284 

Cu 8979   Ba 5989 5624 5247   Tl 15347 14698 12658 

Zn 9659   La 6266 5891 5483   Pb 15861 15200 13035 

Ga 10367   Ce 6549 6164 5723   Bi 16388 15711 13419 

Ge 11103   Pr 6835 6440 5964   Po 16939 16244 13814 

As 11867   Nd 7126 6722 6208   At 17493 16785 14214 

Se 12658   Pm 7428 7013 6459   Rn 18049 17337 14619 

Br 13474   Sm 7737 7312 6716   Fr 18639 17907 15031 

Kr 14326   Eu 8052 7617 6977   Ra 19237 18484 15444 

Rb 15200   Gd 8376 7930 7243   Ac 19840 19083 15871 

Sr 16105   Tb 8708 8252 7514       

Y 17038   Dy 9046 8581 7790       

Zr 17998   Ho 9394 8918 8071       

Nb 18986   Er 9751 9264 8358       

Mo 20000   Tm 10116 9617 8648       

Tc 21044   Yb 10486 9978 8944       

  

https://xdb.lbl.gov/
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S5. Estimation of constant fluorescence background from ASAXS data 

The fluorescent signal is estimated by monitoring the change in the background in the SAXS 

data. Automatic estimation of the fluorescence background was built on method of over-subtraction 

determination for macromolecular SAXS data. Over-subtracted data usually produced by a mismatch 

between buffer used for sample preparation and the pure buffer measurement that is used later for the 

automated subtraction procedure. Detection of over-subtracted data is implemented as a component of 

the automated SAXS data analysis pipeline SASFLOW (Franke et al., 2012) and in the curated 

repository for small angle scattering data and models SASBDB (Kikhney et al., 2020).  

Let us define “over-subtraction” as the presence of one or more systematically negative data 

ranges in the background-subtracted scattering curve. For any given over-subtracted scattering curve 

there is a minimum constant that can be added to the data to make it not over- subtracted. This constant 

is found using a binary search. of the Longest Consecutive Negative Sequence (LCNS) of intensity 

values. As a criterion for detection of such systematically negative intensity subsets is likely to occur 

by chance we have adopted the Correlation Map (Franke et al., 2015). The search for LCNS is repeated 

multiple times on the same data after averaging every two, three, four etc. subsequent points until either 

the data is identified as over-subtracted or a predefined minimal number of averaged data points in the 

scattering curve is reached. In the latter case the curve is considered not over- subtracted. 

The problem of detection of “fluorescence” constant from the one-dimensional data curve can 

be treated as problem of “under-subtraction” when the buffer-subtracted curves still show a significant 

constant offset. “Under-subtraction” is treated as an inverse oversubtraction problem. The over-

subtraction detection approach was adapted to find a maximum constant that can be subtracted from the 

experimental data without making it systematically negative. 

The constant determined by this method reflects the contribution of both scattering of the solute 

and of the fluorescence. Assuming that the anomalous signal is weak, especially in the region where 

the scattering intensity are low, the change in the constant at different energies can be largely attributed 

to the change in the fluorescent signal. Comparison between the determined constants far below the 

absorption edge and around the absorption edge provides an estimation of fluorescence signal 

contribution to the processed data. 

Therefore, this constant is only used as an approximate estimation of the fluorescence signal 

and should be used with caution. Generally speaking, the determined constant value is the sum of 

fluorescence, angle independent fluctuation scattering and resonant Raman scattering. It allows a rapid 

assessment of the quality of fluorescence corrected data and can be further adjusted if needed. 
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S6. Statistics on the PDB entries with corresponding elements 

Table 2 Statistics on PDB entries containing elements. Ratio shows percentage of structures 

available in the PDB that contain the element of interest (as of April 2020, 

https://www.rcsb.org). 

Element Number of entries Ratio of total entries, % 

Zn 16125 9,94 

Ca 11465 7,07 

Se 9715 5,99 

Fe 9226 5,69 

Mn 3632 2,24 

K 2901 1,79 

Ni 2010 1,24 

Br 1894 1,17 

Cu 1728 1,06 

I 1390 0,86 

Co 1284 0,79 

Cd 1038 0,64 

As 702 0,43 

Hg 675 0,42 

Pt 271 0,17 

Mo 248 0,15 

Ba 184 0,11 

Sr 165 0,1 

V 163 0,1 

Xe 137 0,08 

Cs 131 0,08 

W 122 0,08 

Au 107 0,07 

Yb 92 0,06 

https://www.rcsb.org/
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Gd 81 0,05 

Pb 65 0,04 

Ir 64 0,04 

Rb 63 0,04 

Y 62 0,04 

Os 61 0,04 

Tl 56 0,03 

U 54 0,03 

Sm 48 0,03 

Ag 40 0,02 

Pr 38 0,02 

Tb 37 0,02 

Pd 27 0,02 

Re 27 0,02 

Eu 24 0,01 

Kr 21 0,01 

Ta 21 0,01 

Te 16 0,01 

Lu 15 0,01 

La 14 0,01 

Cr 12 0,01 

Ga 12 0,01 

Ho 12 0,01 

Sn 9 0,01 
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S7. Modelling of Dmax variation for PEGMUA covered gold nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7 Normalized Dmax distributions for anomalous and non-anomalous components. 

A) F2
0 2 kDa PEGMUA coated gold nanoparticles. B) v0

2 2 kDa PEGMUA coated gold 

nanoparticles. C) F2
0 5 kDa PEGMUA coated goldv nanoparticles. D) v0

2 5 kDa PEGMUA 

coated gold nanoparticles. 

In order to estimate the difference in 𝐷𝑚𝑎𝑥 in resulting p(r) functions, we have computed 

𝑝(𝑟) functions for the partial intensities 𝐹0
2 and 𝑣0

2 obtained by matrix decomposition of the 

1000 ASAXS datasets generated from original dataset. Generation was done by small 

variations of the intensities of the original curves within the experimental errors using 

DATRESAMPLE software from ATSAS package (Manalastas et al., 2020). Resulting 

distributions of 𝐷𝑚𝑎𝑥  values are shown on the Figure S7. 

𝐷𝑚𝑎𝑥 values are 10.3+-0.5 nm for anomalous component and 12.4+-0.4 nm for 2 kDa 

PEG coated nanoparticles; 9.6+-0.4 and 16.8+-0.7 nm for 5 kDa PEG coated nanoparticles 

respectively. Those values are in a good agreement with the values obtained from a single 𝑝(𝑟) 

(10 and 12.5; and 9.5 and 17 nm respectively). As it can be seen the differences in p(r) between 

the 𝐹0
2 and 𝑣0

2  are indeed small but statistically significant and can be used as an estimate for 

the sizes of the core and shells of the particles. 


