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Table S-1 Table of symbols 

symbol meaning symbol meaning 
Gy Grey - dose (J/kg) 𝑒஽ Photon energy for creating dose (eV) 
D Dose (in units of Gy) 𝑒஺ Photon energy for analyzing damage (eV) 
e Photon energy variable (eV), when 

indexed – corresponds to a specific value 
n Index of the absorption edge (element) 

, t is elapsed time; t is time variable (s) e pre-edge photon energy interval 
A Optical density e+ post-edge photon energy interval 

Apre Pre-edge absorption TM Time multiplier 
Apst Post-edge absorption a Elemental atomic array (Bold) 
Ai Array of optical densities (Bold)  Elemental cross-section array (Bold) 
M Mass (kg) Mr Array of molecular masses (Bold) 
 linear absorption coefficient (m-1) Mr effective molecular mass  
m mass absorption coefficient (cm2.g-1) e(e(+) Array of pre (-) or post (+) photon energies 

(Bold) 
 Atomic cross-section (10-24 cm2/atom)  Molar volume (cm3.mol-1) 
Ė Rate of absorbed energy (J/s) N Number of moles in volume, sh 
x Integration variable (Eq.1, denotes time) C Constant (9.111x10-3 nm2.eV-1) 
i transmitted X-ray intensity (ph/s) f(e) Imaginary scattering factor 
io Incident X-ray intensity (ph/s) w amount of material per area unit (mol/cm2) 
 Density (kg/m3) c, b Linear fit coefficients (Eq. 16) 
h Material thickness (m) Bi Fit to experimental pre/post spectra of i-th pad 

(Bold) 
s Cross-sectional area of beam (m2) Ri(Ai, Bi) Residual of fit for i-th pad 
k Detector efficiency MSE Mean square error 

OD Optical density Dp Dose which generating the 9-pad pattern 
OD1 Optical density for 1 nm, standard density DS Dose associated with post-pad spectroscopy 

i If an index – then it is the pad index r Width (nm) of outermost zone of a zone plate 

𝐿௜  linear dose rate (Gy.m-1s-1) for pad i 
 [dose rate = dD/dt = L* 

 OSA – sample distance in STXM 
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𝑇௜ିଵ,௜ Effective time integral (s) from t-1 to t EW Equivalent weight of PFSA 

x Spatial resolution (probe width) (nm) r Spatial resolution (nm) of focused beam 
 Dwell time (s)  Avogadro’s number (6.022x1023) 

 

 

SI 1.1 Development of an expression for obtaining a from the experiment  

Once the elemental array a is known, then Eq. 12 allows to calculate 𝜇௠ and then 𝜇  (for 

a given ).  

𝜇௠ሺ𝑢𝑛𝑖𝑡ሻ ൌ 𝑁௔
ሺ𝝈∙𝒂ሻ

ሺ𝑴𝒓∙𝒂ሻ
,     (S1) 

However, we are looking for the opposite – for obtaining the elemental array a by fitting the 

experimental optical densities of different pads A(e, ti) (outside of the bonding-dependent near 

edge fine structure) against the linear absorption coefficient 𝜇ሺ𝑒, 𝑡௜ሻ where the elemental array 

𝒂ሺ𝑡ሻ is unknown. For this purpose, despite having the correct functionality, Eq. S1 is not 

suitable.  Indeed, the elemental array a contributes to both scalar products in the numerator and 

denominator of Eq. S1. The array a itself cannot be cancelled, instead any arbitrarily chosen 

element ai can be cancelled because the elemental array can be written as 𝒂 ൌ 𝑎ଵሺ1, 𝑎ଶ/

𝑎ଵ, . . , 𝑎௡/𝑎ଵሻ and in this case a1 can be cancelled in Eq. S1. Obviously, a1 can be substituted by 

any other arbitrarily chosen ai.  Therefore, using Eq. S1 for fitting against the particular a will 

provide only the ratios of the atomic numbers with respect to the dose applied.  

We need to convert Eq. S1 (Eq.12) into a form suitable for numerical fitting. Expressing 

the density  through the molar volume of the material unit,𝜈, and combining with equation 𝜇 ൌ

𝜌𝜇௠, have 

𝜇ሺ𝑒, 𝒂ሺ𝑡ሻሻ ൌ 𝜌𝜇௠ሺ𝑒, 𝒂ሺ𝑡ሻሻ ൌ 𝑁
ሺ𝑴𝒓∙𝒂ሻ

௦௛
𝑁௔

ሺ𝝈∙𝒂ሻ

ሺ𝑴𝒓∙𝒂ሻ
,     (S2) 

After canceling the scalar products ሺ𝑴𝒓 ∙ 𝒂ሻ and rearranging it reads 

𝜇ሺ𝑒, 𝒂ሺ𝑡ሻሻ ൌ ሺℎିଵሻ
ே

௦
𝑁௔ሺ𝝈ሺ𝑒ሻ ∙ 𝒂ሺ𝑡ሻሻ     (S3) 

This equation shows clearly that  depends on a(t). The only way damage can affect  is through 

changes in the elemental array. Eq. S3 (Eq.13) has none of the above limitations where the 

elemental array a is presented in both numerator and denominator, and thus, could be used for 

developing the fitting approach.   

 



3 
 

SI 1.2 Numerical framework for obtaining elemental array a  

1) The experiment outputs the piecewise array of the optical density functions recorded for 

the i-th pad: 

Ai(e, ti)=(A1,(e, ti), A1,(e, ti),  A2,( e, ti), A2,( e, ti),  …, An,( e, ti), An,( e, ti))   (S4) 

where the pre () and post () denote the “pieces” or the energy intervals e(or +)=(e1, e2, 

e3, …) for each of n edges taken for the fit.  

Each sub-array of the i-th pad for the n-th edge An,( e, ti) or An,( e, ti) may have 

different number of energy dependent optical density elements corresponding to the 

experimental data of the particular edge. 

2) Dimension of the elemental array a is n+2, where n is the number of the elements those 

edges provide the experimental data for the piecewise array Ai. For our case a=(S, C, O, 

F, H),  n=3 and corresponds to C 1s, O 1s, and F 1s edges, respectively. The additional 

number 2 corresponds in our case to the elements S and H considered theoretically, 

where S is a variable and H is fixed to 1.  

3) The numerical fitting is an iterative process. We set some values for the elemental array 

a, then calculate Eq. 16 (S5) – the simplest generalized version of Eq.15,  

𝑩𝒊ሺ𝒆, 𝒂ሺ𝑡௜ሻሻ ൌ 𝑐 ൅ 𝑏ሺ𝝈ሺ𝒆ሻ ∙ 𝒂ሺ𝑡௜ሻሻ,   (S5) 

then find residual between the experimental Ai and calculated Bi. Once all trials of the 

elemental array a are calculated we select those a arrays which provide the minimal 

residual within the pre-selected residual interval. The final output of the elemental array a 

would be an average of those arrays. 

4) For the given i-th pad, the array Ai is created, from  the data, and the calculation starts 

with the arbitrarily set a, (1,1,1,1,1). Following rule is used for assigning the element-

position for the a and arrays: the first position in the array corresponds to Sulfur, 

second to Carbon, third to Oxygen, forth to Fluorine, and fifth to Hydrogen, respectively. 

5) Then, coefficients c and b in Eq. S5 are calculated by applying the linear least square fit 

to the data Ai with respect to the chosen a and given .  

6) The quality of the fit is calculated for each iteration and defined by the residual Ri(A, B). 

It depends on a as a parameter. We use the mean square error 𝑀𝑆𝐸ሺ𝒂ሻ as metric for the 

residual 𝑅௜ሺ𝑨, 𝑩ሻ ൌ 𝑀𝑆𝐸௜ሺ𝒂ሻ. It is defined as a sum with respect to all available photon 
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energies el (l=1, 2, …, Np) of all energy intervals of all experimental edges included in 

array Ai (Eq. S4): 

𝑀𝑆𝐸௜ሺ𝒂ሻ ൌ
ଵ

ே೛
∑ ൫𝑨𝒊ሺ𝑒௟, 𝑡௜ሻ െ 𝑩𝒊ሺ𝑒௟, 𝒂ሺ𝑡௜ሻሻ൯

ଶ
௟    (S6) 

here Np is a total number of the energy points for the all pre and post edges intervals used 

for fitting.  

7) Once 𝑀𝑆𝐸௜ሺ𝒂ሻ is calculated the elemental array a is re-set to new a, (2,1,1,1,1) and 

calculation step (5) is repeated. Number of iterations is defined by the number of 

permutations of the n+2 components of the array a accounting the increment of the 

change of the a component values (1.0 or 0.1 depending on the expected accuracy). The 

following cut-offs for the maximal numbers of atoms in the elemental arrays were chosen 

S=3, C=30, O=15, F=50. The number of atoms corresponded to the minimal MSE were 

always less than the cut-off values by ~ 20%, ensuring that the minimum does not 

correspond to the edge of the variation interval of the atomic numbers. 

8) After all permutations are used the process stops. Due to the noise, we use few elemental 

arrays with the lowest 𝑅௜ሺ𝑨, 𝑩ሻ ൌ 𝑀𝑆𝐸௜ሺ𝒂ሻ for calculating the average elemental array a 

and then for calculating the appropriate c and b. The coefficient b=w. The coefficient c is 

a constant and always small comparing minimal A from the experiment. It is probably 

emerges to higher order or stray light (photon energies different from eD) which passes 

through the ZP, OSA and sample.  

 

SI 2. Detector efficiency 

The efficiency of the phosphor-PMT detector was measured using a modified version of 

the cross-over transition in PMMA lithography (Leontowich, 2012). We found that the detector 

efficiency can be significantly different (higher or lower) when new detector coatings were 

applied. The efficiency was also sensitive to the PMT voltage and discriminator settings which 

were set to ensure that the detector response was saturated. During the period when the data for 

this paper was acquired (2017-2018) the detector efficiency at 320 eV was 43 ± 14 % for the 

CLS ambient STXM microscope (see Fig. S2).  The efficiency rises with photon energy to a 

value at 710 eV of 83 ± 6 %. The dashed curve in Fig. S2 corresponds to the approximation 

function 𝑘ሺ𝑒ሻ ൌ ሺെ0.0002𝑒ଶ ൅ 0.288𝑒 െ 32.355ሻ/100. 
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Figure S2: CLS detector efficiencies and approximation with respect to the photon energy. 

 

SI 3.1 Interpolating optical density, A(t) 

The optical density function, A(t), can be obtained either from an OD-image of  the 9-pad 

pattern recorded at the damage energy, 320 eV in this case (Fig. 3c), or from spectra similar to 

those presented in Fig. 5a.  

We are using two models to interpolating A(eD, t) over the full time range. Model 1 uses 

an exponential interpolation 𝐴ሺ𝑡ሻ ൌ 𝑐ଵ ൅ 𝑎ଵ𝑒ି௕భ௧. Model 2 uses a hyperbolic interpolation 

𝐴ሺ𝑡ሻ ൌ 𝑐ଶ ൅
௔మ
௕మା௧

 . Figure S 3.1 plots fits of the two models to the experimental A(t) data. (a) and 

(b) correspond to the fit of the exponential model 1 (solid curve), while (c) and (d) to the 

hyperbolic model 2. Black dots are the raw optical densities at 320eV at each pad. Table S3.1 

presents the fitting coefficients with the mean square error calculated for each model with respect 

to the given data points of A(eD, t). 

  a  b  c  MSE 

model 1  0.15  0.80  0.34  3.0E‐04 

model 2  0.17  0.94  0.32  9.0E‐05 

 

Table S3.1. Least linear fitting coefficients and mean square errors for models 1 and 2 

 

Note, the fitting error for model 1 is three times higher than for model 2. Also note that the last 

two points in Fig. S3.1b are missing because ሺ𝐴 െ 𝑐ଵሻ ൏ 0. Indeed, the argument of the Log 
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function must be positive, i.e. for these two points  𝐴 ൏ 0.34, which is a value of c1. Model 2 

does not have such a restriction.  

 

Figure S 3.1: Two models: exponential, model 1, (a) and (b) and hyperbolic, model 2, (c) and (d) 

of the optical density A(t) interpolations. (a) and (c) represent the linear axes. (b) and (d) 

represent transformations of Y axis, different for each model, allowing all points collapse to the 

line – for illustrating the time intervals where each model provides a good approximation.  

 

Both models give similar quality of fit to the experimental data for low exposure i.e. low dose. 

Both models show poor fits for large exposure times. 

 

SI 3.2 Analysis of asymptotic behavior 

The asymptotic behavior of the exponential and hyperbolic mathematical functions 

representing each fitting model, Figure S3.2, indicates that coefficients c for both models 

corresponds to the optical density of the material at the limit of infinite exposure, 𝐴ሺ𝑡 ൌ ∞ሻ. For 

the given set of the optical density data both models 1 and 2 give c values quite far from zero, 

0.34 and 0.32, respectively.  
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Figure S3.2: Asymptotes at 𝑥 ≡ 𝑡 ൌ ∞ for both models 𝑦ሺ𝑥ሻ ≡ 𝐴ሺ𝑡ሻ. 

 

Since the optical density is reaching the limit of the decay, the damage is reaching its maximal 

value and therefore the leftover material in the pad is getting its maximum resistivity to the 

radiation damage that is being probed in the regime of doses measured.  

 

SI 4. NEXAFS spectra 

The C 1s, F 1s and O 1s NEXAFS spectra from a few of the regions in Fig.  3c are 

plotted in Figures 5(a-c). A summary of the peak assignment is presented in Table S4. In the 

undamaged material the peaks at 292.4 and 295.4 eV correspond to the C 1s (CF2)  *(C-F)() 

and C 1s  *(C-F)(//) transitions, where the indicated *(C-F) orbital is perpendicular and parallel 

to the main  polymer chain, respectively. The shoulder at 298.7 eV peak arises from C 1s (CF2) 

 *(C-C)( ) transitions (Ziegler et al., 1994; Castner et al., 1993; Yan et al., 2018). The broad 

feature at 308 eV is due to C 1s (CF2)  *(C-C) transitions. After radiation damage, the peak at 

285.2 eV  arises from C 1s  *C=C transitions, indicating formation of C=C double bonds after 

F-loss, while the peak at 287 eV is due to C 1s  *C=O transitions, indicating formation of new 

C=O bonds) (Urquhart & Ade, 2002).  

In the undamaged material the F 1s spectrum is dominated by two peaks at 690 and 694 

eV, related to the F 1s*(F-C)() and F 1s*(F-C)(//) transitions (Yan et al., 2018; Ziegler et 

al., 1994; Castner et al., 1993). After radiation damage, the intensity of these peaks diminish 

(with the 690 eV one falling in intensity faster than the 694 eV peak). At large doses these peaks 

are replaced with one broad F 1s*(F-C) peak centered at 693 eV, which reflects the large 

structural changes in which there are not sufficient numbers of adjacent CF2 units to form well 

defined *(F-C)() and *(F-C)(//) electronic states. 
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The peak at 532 eV in the undamaged PFSA is assigned to O 1s  *C=O bonds 

associated with terminal carboxyl groups (Urquhart & Ade, 2002; Yan et al., 2018). The broad 

band around 540 eV is associated with O 1s  *S=O and O 1s  *C-O transitions. It is 

noteworthy that, with increasing dose, the continuum signal in the 536-544 eV range loses 

intensity much more quickly than the discrete O 1s  *C=O transition at 532 eV. In addition 

there is a shift of the *C=O transition to lower energy. This suggests the creation of new C=O 

bonds, possibly along the main chain, in association with F-loss, with the O coming from either 

dissociating side-chain sulfonate or ether groups, or from residual O2 or CO in the STXM tank. 

 

 

Table S4: Energies and assignments of the NEXAFS spectra for the 9-pad experiment 

 

SI 5. Fitting the elemental atomic array, a 

The following intervals of atomic numbers were used for the iterative fit process: for    

1≤S≤3, for 1≤C≤30, for 1≤O≤15 and for 1≤F≤40, see S 1.2. The initial atomic array was (S=1, 

C=1, O=1, F=1, H=1), then the atomic numbers for S, C, O, and F were incremented by 1 (or 0.1 

depending on expected accuracy), while H was kept set for 1, see S 1.2. For all permutations the 

mean square error (MSE) was calculated, Eq. S6. The linear absorption coefficients were 

calculated for the best elemental arrays corresponding to the interval of the lowest MSE for all 

pads. Figure S5 demonstrate how the experimental data of Ai arrays (blue points) align with the 

product of the calculated linear elemental absorption coefficient on thickness for each pad. Pre 

and post edge intervals are denoted as (-) and (+), respectively. 
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Figure S5 Results of COF optical density fitting of the elemental array a for 9-pad experiment 

for PFSA. The panels (a) to (i) plots correspond to the data from 1st (least damaged) to 9th (most 

damaged) pads, (j) is non damaged area in Fig. 3c. Blue points represent series of experimental 

data from Ai arrays. Red curves are the optical density Bi (traditionally called as OD), which is as 

a product of the fit linear elemental absorption coefficient and effective thickness, (a, e)*h, 

calculated for most accurate approximation of the elemental array a for the given pad. 
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The numerical compositions of all elemental arrays a, the least square fit coefficients b and c 

(according to Eq.16) and the corresponding mean square errors (according to S-1.2 Eq. S10) are 

presented in Table 1 of the main text. 

 

SI 6. Chemical formula of tested PFSA materials 

The PFSA material examined (NafionTM D52) is a long side chain (LSC) fluoropolymer 

with an equivalent weight (EW) of 1100 g/mol. For long side chain PFSA’s the formula of the 

side chain is: (OCF2CF(CF3)OCF2CF2SO3H). For this type of side chain the atomic 

composition of the repeat molecular unit is defined by the following expression: S[1] C[7+2m] 

O[5] F[13+4m] H[1], see Scheme 1, where the value in square brackets is the number of atoms 

of that type contributing the molecular repeat unit and the quantity m = (EW-Mr(unit))/Mr(C2F4), 

(Mauritz & Moore, 2004).  The molecular mass of the repeat unit is Mr(unit) = 444 g/mol, and 

the molecular mass of the backbone unit is Mr(C2F4) = 100g/mol, making m=6.56. 

Therefore, the atomic composition of the undamaged NafionTM D52 PFSA is a = 

(1,20,5,39,1). The first position in the atomic composition array is the number of S atoms, second 

is the number of C atoms, then O atoms, then F atoms, and then H atoms, respectively. For the 

iterative fitting procedure, the number of H atoms per repeat unit was always set to 1. This 

element is not included in the experimental piecewise optical density array Ai since it has a 

negligible contribution to the optical density at the X-ray energies used. The S 2p edge was not 

part of the experimental piecewise optical density array Ai since as the S 2p signal was not 

measured reliably. Instead, the number of S atoms per repeat unit in each pad was used as a 

fitting parameter, since S 2p absorption does contribute significantly to the C 1s pre-edge. 

 

SI 7. Full stack doses 

The doses (Ds) received by the sample due to recording the full stacks for the C 1s, O 1s 

and F 1s edge were calculated according to Eq. 19 and are summarized in Table S7. The full 

stack analytical study for all 3 edges added about ~ 1 MGy of dose, which is negligible 

compared to the intentional doses (Dp) used to create analyzable radiation damage see the last 

column in Table S7. The detector efficiency was assumed to be a continuous function of the 

photon energy 𝑘ሺ𝑒ሻ ൌ ሺെ0.0002𝑒ଶ ൅ 0.288𝑒 െ 32.355ሻ/100.  This interpolation formula was 

determined from an Excel trend line fit to the data presented in Figure S2.  
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The number of energy points is equal to the number of images in each stack (Ne), the 

pixel size is 180 nm, the dwell time is 1 ms, the material density is 2 g/cm3, the linear absorption 

coefficient  is calculated based on the elemental array for each pad determined by fitting the re- 

and post-edge signals. 

 

   Doses, Ds (MGy)  Dp (MGy) 

Pad #  C1s  O1s  F1s  Total  Model #4 

1  0.28  0.27  0.23  0.77  1.4E+01 

2  0.28  0.27  0.23  0.78  2.8E+01 

3  0.28  0.28  0.23  0.79  4.3E+01 

4  0.29  0.29  0.24  0.82  7.3E+01 

5  0.30  0.30  0.24  0.84  1.5E+02 

6  0.31  0.31  0.24  0.86  2.3E+02 

7  0.31  0.31  0.24  0.87  3.2E+02 

8  0.33  0.33  0.25  0.91  5.0E+02 

9  0.31  0.33  0.23  0.87  6.8E+02 

 

Table S7: Full stack doses Ds per each pad for C1s, O1s, and F1s edges in comparison with the 

intentionally applied doses Dp. 

 

SI 8. Functional fitting of molecular mass, Mr, and areal density, h, of the pads 

The analysis was performed on the data points presented in Fig. 9b and Fig. 11. 

Similarly, as for (SI 3.1), two models of interpolation were used: exponential and hyperbolic. 

Model 1 uses an exponential interpolation 𝑦ሺ𝑡ሻ ൌ 𝑐ଵ ൅ 𝑎ଵ𝑒ି௕భ௧. Model 2 uses a hyperbolic 

interpolation 𝑦ሺ𝑡ሻ ൌ 𝑐ଶ ൅
௔మ
௕మା௧

 .  The least linear square fit was applied for both test functions Mr 

and h.   

 

SI 8.1 Molecular mass Mr  (Fig. 9) 

In Figure S8.1 the exponential fit corresponds to the solid curve, and the hyperbolic fit to 

the dashed curve. It is clear that the exponential function provides the better fit; its mean square 

error, MSE, is ~10 times lower than for the hyperbolic fit. It is interesting to note that the best 

fitting of the exponential function was for the pads with the highest doses, i.e. for pads 7, 8, 9. 

The hyperbolic function does not fit for the whole available Mr data interval.    
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Figure S8.1: Least linear square fitting of Mr data against the exponential (solid) and hyperbolic 

(dashed) approximations. 

 

Table S 8.1 presents the fitting coefficients and mean square error, MSE, calculated for each 

model with respect to the given data points of Mr(t).  

 

   a  b  c  MSE 

model 1  4.8E+02  0.32  8.1E+02  1.40E+03

model 2  4.5E+02  0.95  8.6E+02  1.09E+04

 

Table S 8.1. Least linear fitting coefficients for models 1 and 2 applied for Mr(t) data in Fig. 9b 

 

SI 8.2 Areal density h (Fig .11) 

For clarity, the fitting of areal density is presented in linear (left) and log-log (right) 

scales. In contrast to the fits for Mr, the hyperbolic fit to the areal density h is significantly 

better than the exponential one. The exponential approximation produces the highest misfit for 

very small and very large radiation damages.  
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Figure S8.2: Least linear square fitting of h data in Fig. 11 against the exponential (solid) and 

hyperbolic (dashed) approximations. Blue point (linear) and blue line (log-log) corresponds to 

undamaged sample. 

 

The overall error, MSE, is also significantly higher for the exponential (model-1) approximation.  

 

   a  b  c  MSE 

model 1  1.4  0.5  1.7  1.1 E‐02 

model 2  2.8  1.6  1.4  3.4 E‐03 

  

Table S8.2: Least linear fitting coefficients for models 1 and 2 applied for h data in Fig. 11 

 

SI 9. Relationship between elemental optical density and linear absorption coefficient 

spectra 

The composition of the material is a function of the applied dose, Fig. 9a, so the linear 

absorption coefficients, Fig. 10a, vary systematically with the dose. However, the elemental 

linear absorption coefficient for each pad varies most at the C 1s edge and least at the F 1s edge.  

At first, this observation does not seem to make sense, since the measured C 1s edge jump varies 

very little over the set of damaged pads whereas the F 1s edge jump drops precipitously with 

increasing dose - see Fig. 5 and Fig. 8. The dose dependence of the linear absorption coefficients 

(Fig.10a) can be reconciled with the measured spectra when one takes into account the changing 

thickness of the pads due to radiation damage. The elemental optical density A is proportional to 

both the pad thickness and the pad linear absorption coefficient, A=h.  For this data set we 

do not have thickness, h, as a measured independent parameter. However, for illustration 
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purposes, we will assume that the density of the damaged pads changes much less than the 

thickness and therefore, assume the density to be the same as that of undamaged PFSA, 2.0 

g/cm3. Thus, the pad geometric thickness (h) in nm is given by 100*(areal density in 10-

5g/cm2)/(density in g/cm3); the derived thickness values are summarized in Table 1. 

 

Figure S-9: Comparing the spectra of the calculated linear absorption coefficient , (a); the 

elemental optical density A=*h, (b); and the experimental optical density (c). The colors of 

curves are independent for each panel. Two edges are selected for comparison C 1s and F 1s.    

 

Fig. S-9b plots the product of the elemental linear absorption coefficient and the thickness for 

the undamaged material for the pad 1, pad 7 and pad 9. Once the reduction in pad thickness is 

taken into account, one sees that the spectral (and compositional) changes are largest at the F 1s 
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edge, which drops by more than 60% between pads 1 and 9, while the C 1s contribution (as 

measured by the C 1s edge jump) barely changes (~10%). The pre C1s signal decreases by a very 

large amount, which is consistent with the large fluorine loss since the signal below 280 eV is 

dominated by the valence ionization continuum of fluorine. Fig. S-9c plots the optical density 

spectra for pad 1 and pad 9, in comparison to the elemental spectra, h, calculated for the 

two pads, using the methods outlined in this article. It is clear that the method does accurately 

reproduce the well-known behavior of X-ray damaged PFSA, namely a very rapid decrease in 

the F 1s signal (both edge jump and spectral fine structure), associated with fluorine loss, but 

very little change in the C 1s edge jump.   
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