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Figure S1. (A) Binary and quaternary thiol end-capped functional PEG molecules are 
incorporated for AuNP interconnection. Molecular weight between the junction point (Mp) is 
controlled by their characteristic structures: 2PEG3400 has Mp = 3400, (EO)n, n=77 and 
2PEG10000 has Mp = 10,000, (EO)n, n=227, for binary-functional PEGs. Meanwhile, 
4PEG10000 has Mp = 10,000, (EO)n, n=227 and 4PEG20000 has Mp = 20,000, (EO)n, n=454, 
for quaternary-functional PEGs. In addition, the number of incorporated PEG molecules is 
controlled to 5 times of the number of AuNPs for each system (5), considering the multi-
reactive sites on a single AuNP.  

 
 
(B) The formed nanocomposite networks exhibit characteristic spectra in SAXS. Beyond the 
critical q* value the systems are responsive to temperature, while below that q* value all the 
systems are stable. Under the given synthetic condition, only 2PEG 10,000 and 4PEG 10,000 
exhibit detectable structures. To get broad q range, two sample-to-detector distance 
conditions in different q regions are combined. The observed q region is broad from gold 
nanoparticle region to polymeric structure region. The main changes happen in the region of 
polymeric structural change. 
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Figure S2. The surface-modified AuNP aqueous stock solutions are adjusted to have a 
concentration of 2.4  1021 AuNPs/m3 in consideration of the AuNPs in average 2 nm 
diameter and the HAuCl4 concentration of 1 mmol/L. For the standard concentration of the 
AuNP stock solution of 1 mmol/L, the concentration of the ligand stock solution is varied as 
5, 10 and 20 of AuNP number. Depending on these number ratio of the ligands to the 
AuNP, the q values obtained by SAXS are diversified.   
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Figure S3. Helmholtz free energy (F) evaluation at different dimensionless interaction 

parameter () 1, 1.5 and 2 according to the increase in the connectivity of a component A in a 

medium B (NA/NB) from 1 to 1000. 
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Network models 

Fluctuation of two junctions separated by several chains are expressed by using the notation 
of Flory (R. Soc. London, Ser. A. 1976, 351, 351) and Pearson (Macromolecules 1975, 10, 
696), 

 

r : end-to-end vector 
Rm and Rn : position vectors of junctions m and n. 
 
For the condition of the average fluctuations for t ,  

 

The mean square fluctuations of the distance, rmn 

 

In the limit as d  , 

 

Junctions m and n are separated by one chain only then, d = 0 

 

Relative value of the fluctuation (<rmn>)
2
 to the distance <rmn

2 
>0 becomes, 
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The deformation of the network structures is described by introducing the deformation factor 
, 

 

For isotropic deformation 


x


y


z 
= 1  : volume of a network remains constant           

For uniaxial deformation at constant volume  


x
= 

,
 

 


y 
=  

z 
= 1/ : stretched ( > 1) or compressed ( < 1) in x direction 

 

Affine and Phantom model and chains of various k values 

Two theoretical models of Affine and Phantom models and real chain are compared. 

 

rij: = ȓij + rij 
rij: vector which joins two point i and j on the chain [by Pearson’s law] 
ȓij: mean separation between point i and j on the chain 
 rij: instantaneous fluctuation of this distance 
 

ȓij = ȓij,0 
ŕij,0: initial mean separation between point i and j on the chain 
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 : Fractional distance from the junction position between the point i and j. 
<Xi2>: Ensemble average of the mean-square fluctuations between the point i and j at a 
certain .  
<x02> : Ensemble average of mean-square fluctuations of the end-to-end distance. 
 
The extent of junction fixation is fixed in Affine model (=) while it fully moves in 
Phantom model (=0). In real chain the degree of fluctuation designated as  ranges between 
two ideal model systems.   
 

 
Phantom Model 
<(Xi)2>/<x2>0 = (1)(12/)2 + (1)/((2)) 
 
For   condition, it goes to Affine model 
Xi)2/<x2>0 = (1)2 
 
By introducing extent of fluctuation,  Real chain is described by  
<(Xi)2>/<x2>0 = [2 /2 + ] [(1)/((2))]+ (1)[(1-2/)2 + (/(2 +))2(2/)] 
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Theoretical Analysis 

Monte Carlo simulation is carried out for a system consisting of 500 nanoparticles by 
assuming that each nanoparticle is independent but with uniformly grafted polymer chains in 
a solvent. Each nanoparticle is assumed as a sphere of diameter, d. The polymer chains are 
modelled as lines of beads with diameter of d, and adjacent lengths between them are in the 
range of 1.011.5d. A square-well potential is used to represent the interaction between two 
NPs, 

U(r) =  (r < d)  

=  (d  r < d)  

=  (r  d)                                   

where  is the attractive well depth and  is the attraction range. If the NPs are completely 
independent, U(r) = 0 (r  d) is supposed to be satisfied. However, considering networked 
structure this term is not considered in this study,  is instead considered as a fully stretched 
correlation length of a network. NPNP and NPpolymer interactions are modelled with 
hard-sphere potentials. Canonical ensemble (NVT) simulations are performed using the 
Metropolis algorithm. The number density fraction of the NPs is 0.005. The simulation box is 
a cube with periodic conditions. Five types of Monte Carlo attempted with a probability 
(0.3:0.1:0.4:0.1:0.1), are translation and rotation of grafting NPs, translation of polymers and 
translation and rotation of grafting NP cluster, respectively. The simulation temperature is set 
as T*= kBT/ = 0.1. Each simulation is at least 10 million Monte Carlo steps of equilibration 
followed by 100 million Monte Carlo steps. A series of systems with a polymer chain length 
range from 5 to 50 are investigated. Five independent runs are carried out for each case. With 
increasing the length of grafted chains, the particle assemblies are observed to change from 
spheres to cylinders, and further sheets. These structures seem to correspond to the self-
assembly of phase-separated NPs. The sheets in these two categories denote local particle 
packing. For even longer chains, the particles are no longer phase-separated from the solvent, 
rather they self-assemble into linear chains. Beyond this, the NPs are free from each other 
within a size of the stretched network. 

 

 

 




