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S1. Details of the temperature measurements 

    In Yakkobi’s measurement methods (namely method1 and method2 in our article) 

the temperature determination expressions are as follows:
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  Formulas (1) and (2) are the uncorrelated and correlated Debye model, 

respectively, which contains Debye temperature ΘD or Debye frequency ωD, Yakkobi 

employed the Cowan’s empirical model [1] to calculated these two quantities, while 

as mentioned in our article, this empirical model is quantitatively unreliable (for 

example, gold has a Debye temperature of 165K at normal pressure while the 

calculated Debye temperature is 360.03K according to Cowan’s empirical model). 

Considering the samples were measured at normal pressure in our article, we have 

used the experimental values of ΘD and ωD instead of the calculated values from 

Cowan’s empirical model when measuring the temperatures by method1 and 

method2, the experimental value of ΘD is 165K for Au, 470K for Fe, 380K for V and 

420K for Ti at normal pressure [2]. 

  The temperature determination formula (formula (S1)) of method1 was derived 

from a Debye model of atoms’ oscillations in the cubic lattice, so this formula isn’t 

suitable for dealing with titanium which has the hexagonal close packed (hcp) 

structure in our measurement condition. Thus we didn’t give the measurement results 

of method1 for titanium.  

    Ping. Y’s work has primarily focused on the much higher temperature range 

(3000K-6000K or even higher), their temperature determination formula was derived 

from the Einstein model: 
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    Using the high temperature approximation B Ek T   and expand formula (4) 

to the first order the following expression could be obtained: 

  2 2( ) / ( / 2) /E B E B effk T M k T k                                        (5) 

   Then the results of Stern et. al. [3] has been employed: 
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    By combination of formulas (5) (6) and (7), the temperature determination 

formula in Ping Y’s work has been obtained: 
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While in our article, the studied temperature range is rather lower as compared 

with Ping. Y’s work, so the original expression of Debye-Waller factor without high 

temperature approximation B Ek T   has been employed. Specifically, the 

MSRD-temperature curves by method 3 (Fig. 2 in our article) were plotted according 

to formula (6) and the temperature measurement results (Fig. 3 and Table. 3 in our 

article) by method 3 were derived from the following formula: 
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S2. Details of the molecular dynamic (MD) simulation and the reproduction of the 

MSRD 

    To examine if the MSRD values from the cumulant expansion are correct and 

have physical meanings, we have carried out the MD simulations of the thermal 

motions of the four kinds of metals at different temperatures and a standardized 

atmosphere (1 bar), the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) package [4] was employed in our MD simulations. The initial three 
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dimensions of simulation box and configurations for the four kinds of metals can be 

seen in table S1:  

Table S1 The initial three dimensions of simulation box and configurations for Au, Fe, V 

and Ti. 

 Dimension x of the 

simulation box 

Dimension y of the 

simulation box 

Dimension z of the 

simulation box 

lattice Number of 

atoms 

lattice 

symmetry 

Au 20.4nm 20.4nm 20.4nm 50×50×50 

fcc lattices 

500000 f m3m 

Fe 14.28nm 14.28nm 14.28nm 50×50×50 

bcc lattices 

250000 i m3m 

V 15.15nm 15.15nm 15.15nm 50×50×50 

bcc lattices 

250000 i m3m 

Ti 14.73nm 22.52nm 24.06nm 50×50×50 

hcp lattices 

500000 P 63/mmc 

 

    Periodic boundary condition have been adopted for the simulation boxes and the 

embedded-atom method (EAM) potentials were used to describe the interactions of 

atoms (Specifically, Au EAM potential model is employed from ref [5], Fe from ref 

[6], V from ref [7] and Ti from ref [8]), then the MD simulations were performed in 

isothermal-isobaric (npt) ensembles where the temperatures and pressures can be 

controlled to the given values by the thermostatting and barostatting algorithms. The 

timescales of the MD simulations are from 200 ps to 500 ps, we monitored the 

temperature, pressure and mean-squared displacement (MSD) of atoms during the 

simulations, and found that after about 5 to 10 ps relax time the systems had achieved 

the thermal equilibrium states, then we sampled the coordinates' information of atoms 

under thermal equilibrium for the following calculations of MSRDs. 

    We noticed that the Debye-Waller factor σ2 (or say the second order cumulant C2) 

is mainly sensitive to the parallel MSRD, namely the projection of total MSRD along 

the bond direction (ref [6]), so we calculated the parallel MSRDs from the MD 
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simulations' trajectories, the results and the second order cumulants fitted from 

EXAFS data are list in table S2: 

 

Table S2 The parallel MSRDs calculated from the MD simulations' trajectories and the 

second order cumulants fitted from EXAFS data. 

 
Parallel MSRD calculated 

from MD simulation (Å2) 

C2 fitted from EXAFS data 

(Å2) 
Deviation 

Au 

300K 1.35×10-2 

1.46×10-2 

(fitted by third order 

expansion) 

6.9% 

700K 3.16×10-2 

3.31×10-2 

(fitted by 4th order 

expansion) 

4.4% 

1000K 4.48×10-2 

4.74×10-2 

(fitted by 4th order 

expansion) 

5.4% 

Fe 

300K 5.64×10-3 5.98×10-3 5.6% 

500K 9.60×10-3 9.55×10-3 0.5% 

700K 1.34×10-2 1.30×10-2 2.6% 

900K 1.68×10-2 1.67×10-2 0.3% 

1100K 2.01×10-2 2.08×10-2 3.4% 

V 

300K 8.40×10-3 8.90×10-3 5.6% 

500K 1.34×10-2 1.43×10-2 6.5% 

700K 1.83×10-2 2.02×10-2 9.3% 

Ti 

300K 8.70×10-3 8.34×10-3 4.3% 

500K 1.38×10-2 1.30×10-2 6.2% 

700K 1.91×10-2 1.80×10-2 6% 

900K 2.52×10-2 2.32×10-2 8.7% 
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    The parallel MSRDs produced by MD simulations matches the C2 values fitted from 

EXAFS data rather good (The smallest deviation is only 0.3%), so we indicates for Au, Fe, V 

and Ti crystals at our experimental temperature range, the cumulant expansion method can 

obtain meaningful and reliable C2 values. 
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