

Volume 26 (2019)

Supporting information for article:

A microfluidic flow-focusing device for low sample consumption serial synchrotron crystallography experiments in liquid flow

Diana CF Monteiro, Mohammad Vakili, Jessica Harich, Michael Sztucki, Susanne M Meier, Sam Horrell, Inokentijs Josts and Martin Trebbin

Exposed area/image = beam size x flow speed x exposure time

Exposed volume/image = exposed area/image x channel depth

Figure S1 Schematic representation of serial synchrotron crystallography data collection in flow. The comparison is made between this work (a) and the only other reported experiment of diffraction in liquid flow at a monochromatic synchrotron X-ray source. (b, Stellato *et al.*, 2014) The gray area represents the crystal slurry. The hit rates were 1.7% for this work and 2.7% in Stellato *et al.*. The schemes are drawn to scale and compare the crystal size and X-ray scanned volume for a single diffraction image. The crystal volume differs by 5-fold. The probed solution volume differs by 10-fold as the microfluidic chip is deeper but the X-ray beam size and exposure time were much smaller. The crystal concentration was roughly the same. The similar indexable hit-rate with decreased exposure volume indicates that the sample is not diluted by flow-focusing.