

Volume 25 (2018)

Supporting information for article:

Elemental fingerprinting of mineral species in iron-fortified milk: anomalous small-angle X-ray scattering (ASAXS) and resonant soft X-ray scattering (RSoXS) studies

Bridget Ingham, Nigel Kirby, Cheng Wang, Mike Brady and Alistair Carr

Element	Micelle	Solution [^]	Windows	Total*
Н	48.76	65.37		39.33
С	28.88	2.10		1.26
Ν	3.42	0.25	57.14	22.91
0	18.46	32.25		19.40
Si			42.86	17.07
Р	0.17	0.012		0.007
S	0.07	0.005		0.003
Ca	0.17	0.012		0.007
Fe (10 mM)	0.08	0.006		0.004
Total	100.00	100.00	100.00	100.00

Table S1Compositions of the various components in skim milk (at%).

^ Comprising 3.14 wt% micelles, 0.63 wt% whey protein, 5.23 wt% lactose, 91.00 wt% water

* Assuming 1 μ m thick solution layer having density 1.039 g.cm⁻³ and 2 × 100 nm thick windows having density 3.44 g.cm⁻³ (total thickness is therefore t_s = 1.2 μ m).

		f" at fluorescence			α_i at fluorescence^				
		С	Ν	0	Si	С	Ν	0	Si
Element	E_b	277	394	526	96.1	277 eV	394 eV	526 eV	96.1 eV
	[eV]	eV	eV	eV	eV				
Н	14	0.003	0.001	0.001	0.030	462	147	57	13048
С	284	0.155	2.781	1.808	0.728	1964	24733	12044	26576
Ν	410	0.348	0.171	3.019	1.517	3771	1302	17240	47444
0	543	0.636	0.374	0.239	2.675	6046	2496	1193	73269
Si	99	6.972	4.678	3.081	0.481	37728	17786	8776	7499
Р	135	8.401	5.904	4.056	0.669	41231	20359	10478	9468
S	163	10.07	7.408	5.186	1.120	47718	24670	12939	15310
Ca	346	1.833	13.26	10.98	2.025	6953	35335	21914	22145
Fe	707	6.011	4.080	2.843	7.600	16359	7801	4073	59638
Average*						8690	4194	5857	31840

Table S2Fluorescence lines and attenuation effects of elements with significant contributions.

 $^{\wedge} \overline{\alpha_i = \frac{2r_e \lambda}{A_i m_{u,i}} f''(E)}$

* Average = $\sum_{i} c_i \alpha_i$ where c_i values are given in Table S1.

Element	τ	ω _k	f"	α	$\mu_{\rm f}$	Total =
						$\tau.~\omega_k$.at%. μ_f
Solution						
Н	4.31×10^2	0	0.002	$2.45 imes 10^2$	0	
С	$7.61 imes 10^5$	$2.8 imes 10^{-3}$	3.419	$3.53 imes 10^4$	$4.98\times10^{\text{-5}}$	$1.34 imes 10^{-3}$
Ν	$6.28 imes 10^4$	0	0.244	$2.15 imes 10^3$	$6.51\times10^{\text{-5}}$	
0	$1.01 imes 10^5$	0	0.477	$3.69 imes 10^3$	$5.88\times10^{\text{-5}}$	
Р	$1.46 imes 10^6$	$6.5 imes 10^{-4}$	6.948	$2.78 imes 10^4$	0	
S	$1.79 imes 10^6$	$5.2 imes 10^{-4}$	8.545	$3.30 imes 10^4$	0	
Ca	3.10×10^{5}	0	1.599	$4.94 imes 10^3$	0	
Fe	9.09×10^{5}	0	5.033	$1.12 imes 10^4$	0	
Windows						
Ν	$6.28 imes 10^4$	0	0.244	$2.15 imes 10^3$	$6.51\times10^{\text{-5}}$	
Si	$1.13 imes 10^{6}$	$7.5 imes 10^{-4}$	5.698	$2.51 imes 10^4$	$1.79 imes 10^{-5}$	$2.59\times10^{\text{-3}}$
Solution						1.34×10^{-3}
Windows						2.59×10^{-3}
Total				6.04×10^{3}		3.93 × 10 ⁻³

Table S3Fluorescence terms below the Ca absorption edge (340 eV), assuming the compositionsgiven in Table S1.

Element	τ	ω_k	f"	α	μ_{f}	Total =
						$\tau.~\omega_k$.at%. μ_f
Solution						
Н	3.62×10^2	0	0.002	$2.15 imes 10^2$	0	
С	$6.64 imes 10^5$	$2.8 imes 10^{-3}$	3.288	$3.20 imes 10^4$	$5.16\times10^{\text{-5}}$	1.21×10^{-3}
Ν	$5.49 imes 10^4$	0	0.227	$1.89 imes 10^3$	$6.72 imes 10^{-5}$	
0	$8.80 imes 10^4$	0	0.454	3.32×10^3	$6.08 imes 10^{-5}$	
Р	$1.31 imes 10^6$	$6.5 imes 10^{-4}$	6.727	2.54×10^4	0	
S	$1.62 imes 10^6$	$5.2 imes 10^{-4}$	8.308	$3.03 imes 10^4$	0	
Ca	$2.71 imes 10^6$	$6.6 imes 10^{-4}$	14.78	4.31×10^4	0	
Fe	$8.17 imes 10^5$	0	4.816	$1.01 imes 10^4$	0	
Windows						
Ν	5.49×10^4	0	0.227	$1.89 imes 10^3$	$6.72\times10^{\text{-5}}$	
Si	$9.90 imes 10^5$	$7.5 imes 10^{-4}$	5.503	$2.29 imes 10^4$	$1.88\times10^{\text{-5}}$	$2.39\times10^{\text{-3}}$
Solution						1.21×10^{-3}
Windows						2.39×10^{-3}
Total				5.48×10^{3}		3.60 × 10 ⁻³

Table S4Fluorescence terms above the Ca absorption edge (360 eV), assuming the compositionsgiven in Table S1.

Element	τ	ω _k	f"	α	$\mu_{\rm f}$	Total =
						$\tau. \; \omega_k \; .at\%. \mu_f$
Solution						
Н	3.72×10^{1}	0	0.0004	$2.29 imes 10^1$	0	
С	$1.17 imes 10^5$	$2.8 imes 10^{-3}$	1.195	$5.99 imes 10^3$	$5.30\times10^{\text{-5}}$	2.19×10^{4}
Ν	$1.97 imes 10^5$	$5.2 imes 10^{-3}$	2.010	$8.63 imes 10^3$	$6.89\times10^{\text{-5}}$	$1.06 imes 10^{-4}$
0	$3.05 imes 10^5$	$8.3 imes 10^{-3}$	3.104	$1.17 imes 10^4$	$6.24 imes 10^{-5}$	$3.07\times10^{\text{-}2}$
Р	$2.63 imes 10^5$	$6.5 imes 10^{-4}$	2.671	5.19×10^3	0	
S	$3.46 imes 10^5$	$5.2 imes 10^{-4}$	3.514	$6.59 imes10^3$	0	
Ca	$7.71 imes 10^5$	$9.7 imes 10^{-4}$	7.788	$1.17 imes 10^4$	0	
Fe	$2.02 imes 10^5$	0	2.049	2.21×10^3	0	
Windows						
Ν	$1.97 imes 10^5$	$5.2 imes 10^{-3}$	2.010	$8.63 imes 10^3$	$6.89\times10^{\text{-5}}$	$1.61 imes 10^{-2}$
Si	$1.96 imes 10^5$	$7.5 imes 10^{-4}$	1.990	$4.26 imes 10^3$	$1.95\times10^{\text{-5}}$	4.89×10^{4}
Solution						3.10 × 10 ⁻²
Windows						1.66×10^{-2}
Total				5.05×10^{3}		4.76 × 10 ⁻²

Table S5Fluorescence terms below the Fe absorption edge (700 eV), assuming the compositionsgiven in Table S1.

Element	τ	ω_k	f"	α	$\mu_{\rm f}$	Total =
						τ . ω_k .at%. μ_f
Solution						
Н	3.42×10^{1}	0	0.0004	$2.10 imes 10^1$	0	
С	$1.09 imes 10^5$	$2.8 imes 10^{-3}$	1.154	$5.62 imes 10^3$	$5.41\times10^{\text{-5}}$	$2.09 imes 10^{-4}$
Ν	$1.85 imes 10^5$	5.2×10^{-3}	1.937	$8.08 imes 10^3$	$7.02\times10^{\text{-5}}$	$1.01 imes 10^{-4}$
0	$2.87 imes 10^5$	8.3×10^{-3}	3.007	$1.10 imes 10^4$	$6.36\times10^{\text{-5}}$	$2.93\times10^{\text{-}2}$
Р	$2.46 imes 10^5$	$6.5 imes 10^{-4}$	2.579	$4.87 imes 10^3$	0	
S	3.24×10^{5}	$5.2 imes 10^{-4}$	3.398	$6.20 imes 10^3$	0	
Ca	$7.26 imes 10^5$	$9.7 imes 10^{-4}$	7.568	$1.10 imes 10^4$	0	
Fe	$1.43 imes 10^6$	$1.26 imes 10^{-2}$	17.02	$1.78 imes 10^4$	0	
Windows						
Ν	$1.85 imes 10^5$	$5.2 imes 10^{-3}$	1.937	$8.08 imes 10^3$	$7.02\times10^{\text{-5}}$	$1.54 imes 10^{-2}$
Si	$1.83 imes 10^5$	$7.5 imes 10^{-4}$	1.917	$3.99 imes 10^3$	$2.01\times10^{\text{-5}}$	$4.70 imes 10^{-4}$
Solution						2.96 × 10 ⁻²
Windows						1.59×10^{-2}
Total				4.75×10^{3}		4.55 × 10 ⁻²

Table S6Fluorescence terms above the Fe absorption edge (720 eV), assuming the compositionsgiven in Table S1.