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S1. Finite Element Analysis  

A 25×25×2 mm3 bulk Quartz (309) crystal was modelled and analysed using ANSYS v17.2. The 

anisotropic properties of Quartz (thermal conductivity, thermal expansion, and Young’s modulus) 

were taken into account[1]. The coordinates were defined so that the illuminated crystal face was the 

x-y plane, z points into the crystal and the c-axis lies in the x-z plane, 18.4° from surface normal (z), as 

shown in fig S1a. The beam intensity and power were modelled as a volumetric density function with 

Gaussian beam profiles for x and y and an exponential absorption decay in z. Incidence angle was 

taken to be normal (from 88.36°), any reflected or transmitted intensity were neglected. The power 

density p and total power P are calculated as: 

𝑝(𝑥, 𝑦, 𝑧) = 𝐴𝑒
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with the following parameters from actual beam profile measurements and attenuation length at 

11.215 keV[2]. 

σx= 1.5mm FWHM/2.35 = 0.6383 mm 

σy= 0.75mm FWHM/2.35 = 0.3191 mm 

lz=0.358 mm 

where the value of A [Wm-3] is adjusted to produce the beam power corresponding to the selected 

attenuation. The volumetric power input was implemented in ANSYS using the Mechanical APDL 

function generator. Natural convection in still air (h=10 Wm-2K-1) at 22°C was applied to the entire 

crystal surface, temperatures and strains were then recorded in their steady state. To model a strain 

free mounting, the “weak springs” constraint was used in ANSYS, where the unsupported object’s 

rigid body motion resulting from small overall force imbalances is suppressed. The resulting 

“mounting strains” induced near the beam footprint were confirmed to be negligible compared to 

thermal strains even for the lowest power considered. A fine mesh was used for the center area 

(3×1.4×2 mm3 xyz) with an element size of 0.15×0.175×0.0625 mm3. Additional intermediate nodes 

were added when running the simulation to increase accuracy as needed but were not used in data post 

processing. 

Data post-processing for the Finite-Element Model was done in Mathematica, where results for 

Normal Elastic Strain in the z-direction and Temperature distribution within the sample were 

evaluated. Simulated strained rocking curves are obtained from a weighted distribution of Bragg angle 
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displacements: the angular change ∆θ [rad] of a volume element at position 𝒓⃗   is directly proportional 

to the local normal strain 𝝐(𝒓⃗ ) [m/m] via 

∆𝜃(𝑟 ) = 𝜖(𝑟 ) tan 𝜃𝐵0 

with 𝜃𝐵0 the unstrained Bragg angle and the local weight proportional to the power density times an 

exponential absorption factor to account for the reflected ray’s exit path through the crystal. Note that 

for significant power loads the thermally strained crystal is not in the dynamical diffraction regime, 

therefore the depth dependence of the weights is approximated according to linear absorption, not to 

the dynamical extinction depth. 

Assuming that thermal distortions only occur in the first crystal while the second crystal is essentially 

unaffected, measured widths of second-crystal rocking curves for practical power loads can be 

simulated by convolution of a broadened first-crystal reflectivity with an ideal second-crystal 

reflectivity. Representing the first-crystal reflectivity by its ideal width δθ plus a broadening  

equal to the RMS value of the angular changes defined above, second-crystal rocking curve widths in 

Gaussian approximation are 

∆𝜃2~√2𝛿𝜃2 + √8𝑙𝑛2 ∆𝜃𝜎

2
 

 

From the angular shift data the weighted mean is calculated as 
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and the (biased) standard deviation is then  

∆𝜃𝜎
2 =

2

𝑃
∑[𝛥𝜃(𝑟 ) − 𝛥𝜃 ]

2
 𝑝(𝑟 ) 𝑒

−𝑧
𝑙𝑧⁄

𝑟 

 

The resulting second crystal widths are plotted as the green curve in Fig. 5. 

 

S2. Analytical model  

Crystal Temperature profiles are modelled by an idealized thermal spreader such as those used for 

high power electronic devices. The model consists of [13] a continuous, circular (radius a) power 

source P on the surface of a semi-infinite (z>0) medium of isotropic thermal conductivity K. There is 

no heat flow anywhere else, and the temperature rise is relative to that far from the source. The 

temperature rise profile (in cylindrical coordinates, z>0) and maximum temperature rise (at the origin) 

are 

∆𝑇(𝑟, 𝑧) = ∆𝑇𝑚𝑎𝑥 ∙ 𝐹(𝑟 , 𝑎), 𝐹(𝑟 , 𝑎) = ∫ 𝑒−𝜆𝑧𝐽0(𝜆𝑟)𝐽1(𝜆𝑎)
𝑑𝜆

𝜆
,
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These spatial profiles F are the same for all powers and materials, unfortunately, they cannot be 

expressed in a closed form. Nevertheless, an estimation can still be obtained, as normal strain is 

relatively small and found to be mostly proportional to the temperature rise. 

With these approximations, the weighted RMS of the local angular shifts can be written as 

𝑤𝑅𝑀𝑆[∆𝜃(𝑟 )]~ tan 𝜃𝐵0 𝛼 𝜁 ∆𝑇𝑚𝑎𝑥  𝜎𝐹 

Where ζ<1 represents a reduction of the linear thermal expansion coefficient α since each element 

volume is mechanically constrained to different degrees by the surrounding elements at different 

temperatures, and σF is the weighted RMS value of the F-profiles. Numerical values for σF were 

obtained via Monte Carlo. Estimating the thermoelastic strain field of a semi-infinite heat spreader 

poses a much harder problem and is not necessary for an estimation, so values for ζ where obtained 

from FEA simulations as a weighted average of the effective linear thermal expansion relative to the 

unconstrained value.  

These results are expected to be largely applicable to other cases since the constraints arise mostly 

from the semi-infinite geometry and the F-profiles, which, for beam sizes and attenuation lengths 

similar to those considered here, are not found to vary significantly.  

Using the same Gaussian approximation as for the FEA results, a relative broadening figure is defined 

as the ratio of the full power second crystal rocking curve width to the reference width 

∆𝜃2,𝑚𝑎𝑥/∆𝜃2,𝑜 = √1 + 𝑆2 

with 

𝑆 =
2√𝑙𝑛2  𝑤𝑅𝑀𝑆[∆𝜃(𝑟 )]

 𝛿𝜃
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The first factor depends on beam properties (power and size), the second on material properties 

(thermal conductivity and expansion coefficient), third on the selected reflection (Bragg angle and 

reflection width) and the last is a numerical factor containing constants and the numerical values 

mentioned above. 

 


