

Volume 23 (2016)

Supporting information for article:

A Soft XAS Transmission Cell for Operando Studies

Christoph Schwanke, Lifei Xi and Kathrin Maria Lange

S1. Experimental Section

S1.1. Chemicals

MnCl₂. 4H₂O (>99.0%), methylphosphonic acid (99.0-101.0%), NaOH (>98%) and KNO₃ (>99.0%) were purchased from Sigma-Aldrich. 0.05 mM Methyphosphate buffer (MeP_i, pH8.0) was prepared as in literature (Huynh *et al.*, 2014). KNO₃ was added to maintain ~2 M ionic strength of electrolyte. All electrolytes were prepared with DI water (18.6 M Ω .cm).

S1.2. Electrodeposition of MnO_x

All electrochemical experiments for deposition and XAS tests were performed using CHI6016E working station (CHI Instruments) or EmStat3+ (PalmSens) in a three-electrode electrochemical system. All electrode potentials were converted to the NHE scale using E(NHE) = E(Ag/AgCl) + 0.199V. Electrodeposition was carried out at 0.85 V for 40 min without stirring and iR compensation in a freshly prepared nitrogen purged 0.5 mM Mn²⁺ in 0.1 M MeP_i buffer solution (Huynh *et al.*, 2014). A brown yellowish film was formed. After the catalyst deposition the coated Si₃N₄/Au membrane was rinsed with DI water.

S1.3. In operando XAS measurements

In-operando electrochemical X-ray absorption measurements in transmission mode were performed with a new developed transmission electrochemical flowcell attached to the LiXEdrom 2.0 endstation at the U56-2 PGM2 beamline at Bessy II. XAS spectra were collected at several locations on the sample to ensure that the recorded spectra are representative of the sample. Energy calibration was performed with the 640.3 eV peak using the MnO powder spectra obtained by us and from literature (Khan *et al.*, 2015). Each Mn L-edge scan takes around 5 min. We averaged 4-9 scans to enhance the signal-to-noise ratio. The spectra were normalized by subtracting the background, integrating the area of both, L_3 and L_2 edge, and dividing the spectra by that area.

S1.4. Spectra fitting

The experimental spectra were fitted with the linear combination fitting method by employing the Igor Pro program package. The percentage values were calculated as below:

Fitted spectrum = $a*MnO + b*Mn_2O_3 + c*MnO_2$

The percentage of each manganese oxide is obtained by MnO = a /(a + b + c), $Mn_2O_3 = b /(a + b + c)$, etc. The Chi square value is used to evaluate the fitting quality, while the error bars in the figures are used to show the standard deviation.

S1.5. Deposited dose

The dose D was calculated as reported by Leontowich et al. (Leontowich et al., 2012):

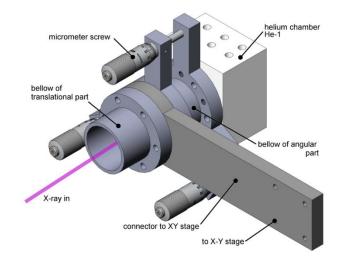
$$D = \frac{F_{SA} \cdot E}{V\rho} \cdot t = Dr \cdot t$$

Where D is the dose in Grays (Gy = J kg⁻¹); Dr is the dose rate; F_{SA} is the photon flux absorbed in the irradiated sample volume (s⁻¹), t is the irradiation time, E is the energy of a photon, V is the irradiated sample volume and ρ is the density of the sample.

We estimate the photon flux F_{SA} before the sample, after the liquid layer, from the transmission current I_T (Ampere) at the GaAsP photodiode:

$$I_T = e \cdot \xi \cdot F_S \cdot e^{-\mu d} \cdot e^{-\mu_{Au} d_{Au}} \cdot e^{-\mu_{SiN} d_{SiN}}$$

where e is the elementary charge, ξ is the quantum efficiency of the GaAsP photodiode and the three exponential factors account for absorption in the sample, the Au coating and the Si₃N₄ membrane with the respective thicknesses d, d_{Au}, d_{SiN} and absorption coefficients μ , μ_{Au} and μ_{SiN} . The photon flux absorbed in the sample is than given by


$$F_{SA} = F_S \cdot (1 - e^{-\mu d})$$

We find that if no liquid layer is present, a dose of 11.7 MGy is accumulated with each scan (5 minutes). For the liquid layer thickness employed during the measurements, a dose of 0.26 MGy was deposited during one scan.

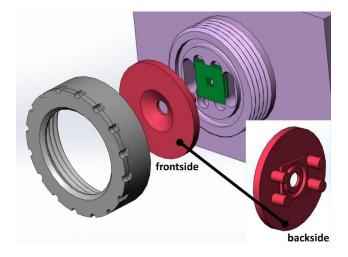

		With liquid	Without liquid	Unit	Remark
Transmission current	IT	2	90	nA	current at 635 eV (below Mn L3-edge)
Typical attenuation length of MnOx	λ	200	200	nm	see (Ruosi <i>et al.,</i> 2014)
density	ρ	3.3	3.3	g / cm3	density of Mn(OH)2
duration of exposure	t	5	5	min	duration of one scan
sample thickness	d	200	200	nm	determined by coulometry
illuminated area width	w	900	900	μm	beamline parameter
illuminated area height	h	100	100	μm	beamline parameter
photon energy	Е	640	640	eV	below Mn L ₃ -edge
Au thickness	dAu	20	20	nm	working electrode contact
Au attenuation length (@640 eV)	λAu	5.08E-02	5.08E-02	μm	See http://www.cxro.lbl.gov/
Si ₃ N ₄ thickness	dSiN	100	100	nm	substrate
Si ₃ N ₄ attenuation length (@640 eV)	λSiN	0.38	0.38	μm	See http://www.cxro.lbl.gov/
GaAsP Quantum Efficiency (@640	2	100	100		
eV)	ξ			1/	see (Krumrey & Tegeler, 1992)
photon flux at diode photon flux before sample	FT FS	1.25E+08 7.95E+08	5.62E+09 3.58E+10	1/s 1/s	=IT/ [e*ξ] =IT/ [e*ξ*exp(-dAu/λAu)*exp(- dSiN/λSiN)*exp(-d/λ)]
photon flux absorbed in sample	FSA	5.03E+08	2.26E+10	1/s	=FS* [1-exp(-d/λ)]
photon flux per area before sample	GS	6.94E+09	3.12E+11	1/(s*mm2)	=FS/(w*h*π/4)
illuminated mass	m	4.67E-11	4.67E-11	kg	$= w^*h^*\pi/4^*d^*\rho$
dose rate	Dr	0.0009	0.039	MGy/s	$=FSA*E/(w*h*\pi/4*d*\rho)$
dose	D	0.260	11.7	MGy	$=FSA*E/(w*h*\pi/4*d*\rho)*t$

Table S1Table S1. Details for the calculation of the dose deposited per scan in a MnO_x film, with
or without liquid layer present.

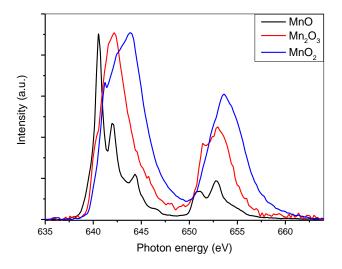

Figure S1 Schematic illustration (3D-model) of translational and angular part for positioning of the cell. X-ray photons enter from the lower left side through the translational part, through the angular part and then enter the transmission cell. The translational part allows precise positioning of the cell with a first bellow and a x-y stage. The angular part is attached to this and consists of a second bellow and three micrometer screws that control the rotation of the cell. The first flange of the bellow of the translational part and several components of the cell are not shown.

Figure S2 Schematic illustration of cap which holds the pair of membranes for fast replacement of membranes. The part which prevents rotation of the membranes is shown in red.

Figure S3 Mn L-edge XA spectra of the reference manganese oxide powders (Huynh *et al.*, 2014). All spectra are normalized to their respective background. The spectra were recorded in total electron yield (TEY) mode.

Supporting References

Huynh, M., Bediako, D. K., Liu, Y. & Nocera, D. G. (2014). J. Phys. Chem. C. 118, 17142-17152.

Khan, M., Xiao, J., Zhou, F., Yablonskikh, M., MacFarlane, D. R., Spiccia, L. & Aziz, E. F. (2015). *ChemSusChem.* **8**, 1980–1985.

Leontowich, A. F. G., Hitchcock, A. P., Tyliszczak, T., Weigand, M., Wang, J. & Karunakaran, C.

(2012). J. Synchrotron Radiat. 19, 976–987.

Ruosi, A., Raisch, C., Verna, A., Werner, R., Davidson, B. A., Fujii, J., Kleiner, R. & Koelle, D. (2014). Phys. Rev. B. 90, 125120.

http://www.cxro.lbl.gov/