

Volume 57 (2024)

Supporting information for article:

High-pressure intrusion of double salt aqueous solution in pure silica chabazite: searching for cation selectivity

Giorgia Confalonieri, Andrey Ryzhikov, Rossella Arletti, Frederico Alabarse, Habiba Nouali, Riccardo Fantini and Jean Daou

Thermogravimetric (TG) analyses were carried out on a Mettler Toledo STARe apparatus, under air flow, with a heating rate of 5 °C/min from 30 to 800 °C. ²⁹Si MAS and ¹H $^{-29}$ Si CPMAS NMR spectra were recorded at room temperature on a Bruker Advance II 300 MHz spectrometer, with a double-channel 7 mm Bruker MAS probe. The recording conditions are given in Table SN.

Table S1. Recording conditions of the ²⁹ Si MAS NMR spectra.

	²⁹ Si MAS
Chemical Shift Standard	Tetramethylsilane (TMS)
Frequency (MHz)	59.6
Pulse width (µs)	2.3
Flip angle	π/6
Contact time (ms)	/
Recycle time (s)	80
Spinning rate (kHz)	4
Scans number	1000

Figure S1. ²⁹Si MAS NMR spectra of the Si-CHA samples before and after three intrusion–extrusion cycles in KCl $1M + CaCl_2$ 1M aqueous solution.

Figure S2. Thermogravimetric curves of the Si-CHA samples before and after three intrusion–extrusion cycles in KCl $1M + CaCl_2 1M$ aqueous solution.

Table S2. atomic coordinates, occupancy factors and isotropic thermal parameters of Si-CHA at ambient conditions.

	Х	У	Z	occ.	Biso (Å ²)
Sil	0.2291(1)	-0.0005(1)	0.1042(1)	1	1.00(5)
01	0.1203(2)	-0.1203(2)	0.1287(2)	1	1.00(7)
02	1/3	0.0190(3)	1/6	1	1.00(7)
03	0.2004(3)	0.1002(2)	0.1218(3)	1	1.00(7)
04	0.2622(3)	0	0	1	1.00(7)
Wa	0.514(5)	0.257(3)	-0.262(6)	0.08(1)	15(3)
Wb	0.215(5)	-0.215(5)	-0.638(9)	0.09(1)	15(3)

Table S3. Evolution upon compression of the unit cell parameters of Si-CHA under intrusion of KCl $1M + CaCl_2 1M$ aqueous solution.

Pressure (GPa)	a (Å)	c (Å)	V (Å ³)
Ambient	13.53759(1)	14.76042(5)	2342.68(1)
0.14	13.5412(5)	14.7482(5)	2341.9(2)
0.22	13.5364(9)	14.7807(9)	2345.5(4)
0.38	13.5187(1)	14.8081(1)	2343.7(5)
0.53	13.5013(9)	14.8314(9)	2341.3(9)
0.74	13.4890(1)	14.8388(9)	2338.3(5)
0.93	13.4871(1)	14.8225(1)	2335.0(5)
1.17	13.5043(2)	14.7301(9)	2326.4(6)

	х	У	Z	occ.	Biso (Å ²)
Sil	0.2302(3)	-0.0014(4)	0.1030(2)	1	1.0(1)
01	0.1189(4)	-0.1189(4)	0.1262(6)	1	1.0(2)
02	1/3	0.0126(8)	1/6	1	1.0(2)
03	0.2069(8)	0.1034(4)	0.1224(7)	1	1.0(2)
04	0.2612(4)	0	0	1	1.0(2)
Cl	0.911(2)	-0.911(2)	0.336(3)	0.050(2)	7(2)
Κ	2/3	1/3	-0.018(8)	0.190(4)	19(2)
Wa	0.486(3)	0.243(1)	-0.218(2)	0.255(6)	20(1)
Wb	0.180(6)	-0.180(6)	-0.637(8)	0.169(5)	20(1)

Table S4. Cell parameters, atomic coordinates, occupancy factors and isotropic thermal parameters of Si-CHA under intrusion of KCl $1M + CaCl_2 1M$ aqueous solution at 0.14 GPa.

Table S5. Cell parameters, atomic coordinates, occupancy factors and isotropic thermal parameters of Si-CHA under intrusion of KCl $1M + CaCl_2 1M$ aqueous solution at 0.22 GPa.

	Х	У	Z	occ.	Biso (Å ²)
Si1	0.2291(5)	0.0004(6)	0.1027(3)	1	1.0(1)
01	0.1176(6)	-0.1176(6)	0.1268(7)	1	1.0(2)
02	1/3	0.017(1)	1/6	1	1.0(2)
03	0.2045(8)	0.1023(4)	0.1191(7)	1	1.0(2)
04	0.2621(3)	0	0	1	1.0(2)
Cl	0.911(1)	-0.911(1)	0.332(3)	0.240(4)	20.(1)
K	2/3	1/3	0.038(4)	0.193(5)	5.0(5)
Ca	0.132(8)	-0.132(8)	-0.71(2)	0.087	19(2)
Wa	0.503(2)	0.2514(8)	-0.226(1)	0.666(6)	20(1)
Wb	0.181(1)	-0.181(1)	-0.642(3)	0.306(7)	20(1)

Table S6. Cell parameters, atomic coordinates, occupancy factors and isotropic thermal parameters of Si-CHA under intrusion of KCl 1M + CaCl₂ 1M aqueous solution at 0.38 GPa.

	X	У	Z	occ.	Biso (Å ²)
Si1	0.2294(4)	-0.0006(5)	0.1029(3)	1	1.0(2)
01	0.1184(5)	-0.1184(5)	0.1261(7)	1	1.0(3)
02	1/3	0.0159(10)	1/6	1	1.0(3)
03	0.2042(8)	0.1021(4)	0.1199(8)	1	1.0(3)
04	0.2634(1)	0	0	1	1.0(3)
Cl	0.9108(8)	-0.9108(8)	0.332(2)	0.295(4)	20(1)
K	2/3	1/3	0.048(2)	0.255(5)	5(1)

Ca	0.135(5)	-0.135(5)	-0.645(8)	0.099	18(2)
Wa	0.501(1)	0.2545(6)	-0.228(1)	0.666(6)	11(1)
Wb	0.179(9)	-0.179(9)	-0.642(8)	0.342(7)	11(1)

Table S7. Cell parameters, atomic coordinates, occupancy factors and isotropic thermal parameters of Si-CHA under intrusion of KCl $1M + CaCl_2 1M$ aqueous solution at 0.74 GPa.

	Х	У	Z	occ.	Biso (Å ²)
Si1	0.2309(4)	-0.0011(4)	0.1028(3)	1	1.0(3)
01	0.1187(5)	-0.1187(5)	0.1252(7)	1	1.0(3)
02	1/3	0.013(1)	1/6	1	1.0(3)
O3	0.2067(8)	0.1033(4)	0.1201(8)	1	1.0(3)
04	0.2659(1)	0	0	1	1.0(3)
Cl	0.9106(8)	-0.9106(8)	0.332(2)	0.310(5)	19.7(9)
K	2/3	1/3	0.055(2)	0.333(6)	4.9(9)
Ca	0.135(6)	-0.135(6)	-0.641(9)	0.099	13(2)
Wa	0.5095(9)	0.2547(5)	-0.2285(9)	0.666(7)	6.5(8)
Wb	0.179(10)	-0.179(10)	-0.643(8)	0.406(8)	6.5(8)

Table S8. Cell parameters, atomic coordinates, occupancy factors and isotropic thermal parameters of Si-CHA under intrusion of KCl $1M + CaCl_2 1M$ aqueous solution at 0.93 GPa.

		-			
	х	У	Z	occ.	$B(Å^2)$
Sil	0.2311(5)	-0.0012(4)	0.1029(3)	1	1.0(2)
01	0.1181(5)	-0.1181(5)	0.1250(7)	1	1.0(3)
02	1/3	0.01158	1/6	1	1.0(3)
03	0.2086(8)	0.1043(4)	0.1207(8)	1	1.0(3)
04	0.2658(9)	0	0	1	1.0(3)
Cl	0.9106(8)	-0.9106(8)	0.3324(18)	0.310(4)	12.8(8)
Κ	2/3	1/3	0.0563(16)	0.333(6)	1.3(8)
Ca	0.135(10)	-0.135(10)	-0.646(19)	0.099	12(2)
Wa	0.5095(9)	0.2548(6)	-0.2286(9)	0.666(8)	6.3(8)
Wb	0.179(9)	-0.179(9)	-0.643(8)	0.402(8)	6.3(8)
Wc	0	0	0	0.050(2)	6.3(8)

			P amb	0.14 GPa	0.22 GPa	0.38 GPa	0.74 GPa	0.93 GPa
Si1	01		1.594(2)	1.591(3)	1.595(6)	1.586(5)	1.586(5)	1.585(5)
	02		1.593(2)	1.607(4)	1.613(7)	1.613(7)	1.603(7)	1.608(5)
	03		1.615(2)	1.617(5)	1.597(9)	1.606(8)	1.617(8)	1.619(8)
	04		1.601(2)	1.584(2)	1.584(6)	1.590(6)	1.594(4)	1.592(6)
Wa	02	x2		3.17(2)	3.36(2)	3.20(2)	3.36(1)	3.33(1)
	Cl			3.17(3)	3.38(4)	2.60(8)	3.43(3)	3.41(3)
	K	x3		2.72(5)	2.86(2)	2.91(1)	3.01(3)	3.01(2)
	Wa	x2	3.10(1)	2.60(5)	2.60(3)	2.60(2)	2.60(2)	2.60(2)
	Wb	x2	3.31(1)	2.60(5)	2.6(3)	2.60(8)	2.60(2)	2.60(9)
Wb	01		2.60(9)	2.71(10)	2.8(4)	2.83(13)	2.86(9)	2.8(1)
	02	x2		3.11(6)	3.2(3)	3.17(8)	3.17(9)	3.15(8)
	04	x2		3.27(3)	3.25(6)	3.23(3)	3.19(3)	3.19(4)
	Cl	x2		3.15(9)	3.2(2)	3.2(2)	3.15(19)	3.15(9)
	Wa		3.31(2)	2.60(5)	2.6(3)	2.60(8)	2.60(2)	2.60(9)
Cl	01				3.51(3)			
	02						3.67(3)	
	03	x2		3.17(1)	3.16(4)	3.16(4)	3.16(3)	3.16(3)
	04	x2		3.20(5)	3.19(2)	3.17(8)	3.15(2)	3.15(2)
	Wb	x2		3.15(9)	3.2(2)	3.2(2)	3.15(19)	3.15(9)
	Wa			3.17(3)	3.38(4)	3.41(4)	3.43(3)	3.41(3)
	Ca				2.8(1)	2.80(9)	2.80(9)	2.80(9)
K	Wa	x3		2.72(5)	2.86(2)	2.91(1)	3.01(3)	3.01(2)
Ca	01				2.4(4)			
	Cl				2.8(2)	2.80(9)	2.80(9)	2.80(9)
						× /		
Wc	03							3.02(1)

Table S9. Framework and extraframework bond distances (<3.5 Å) for the refined structures

	Pamb	0.14 GPa	0.22 GPa	0.38 GPa	0.74 GPa	0.93 GPa
Rwp (%)	10.6	2.13	2.52	2.23	2.25	2.32
R _{exp} (%)	3.56	2.56	2.68	2.68	2.67	2.68
Rp (%)	8	1.06	1.36	1.19	1.17	1.21
No. of variables	50	50	50	50	50	50
No. of reflections	422	233	233	233	233	233

Table S10. Details of structural refinement parameters of Si-CHA under intrusion of Si-CHA at ambient conditions.

Figure S3. Observed (blue marks) and calculated (red line) diffraction patterns and final difference curve (grey line) from Rietveld refinements of Si-CHA at ambient conditions.

Figure S4. Observed (blue marks) and calculated (red line) diffraction patterns and final difference curve (grey line) from Rietveld refinements of Si-CHA under intrusion of KCl 1M + CaCl₂ 1M aqueous solution at 0.22 GPa.

Figure S5. Observed (blue marks) and calculated (red line) diffraction patterns and final difference curve (grey line) from Rietveld refinements of Si-CHA under intrusion of KCl 1M + CaCl₂ 1M aqueous solution at 0.22 GPa.

Figure S6. Observed (blue marks) and calculated (red line) diffraction patterns and final difference curve (grey line) from Rietveld refinements of Si-CHA under intrusion of KCl 1M + CaCl₂ 1M aqueous solution at 0.38 GPa.

Figure S7. Observed (blue marks) and calculated (red line) diffraction patterns and final difference curve (grey line) from Rietveld refinements of Si-CHA under intrusion of KCl 1M + CaCl₂ 1M aqueous solution at 0.74 GPa.

Figure S8. Observed (blue marks) and calculated (red line) diffraction patterns and final difference curve (grey line) from Rietveld refinements of Si-CHA under intrusion of KCl 1M + CaCl₂ 1M aqueous solution at 0.93 GPa.