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S1. Multiprocessing scheme and reconstruction performance

The phasing process used in xframe fxs reconstruct is implemented such that it can

be run on a single CPU core. This allows for simple parallelization by running several

reconstructions in parallel if multiple CPU cores are available. An illustration of the

the multiprocessing scheme including GPU acceleration is shown in Fig. S1. Notably,

access to the GPUs is entirely handled by separate GPU workers, this allows one to

limit the GPU memory requirements and thus enables performant phasing on larger

grid sizes and harmonic order limits. When GPU acceleration is used the parallelism of

individual phasing workers is slightly broken, since individual calls to a single graphics

card have to happen sequentially. This causes the phasing processes to compete for

GPU time. Since, however, the individual GPU workloads are quite small compared

to the rest of the phasing loop, we found this effect to be negligible, as it can be seen

in the performance Fig. S2.

xFrame currently handles multiprocessing using the python multiprocessing module.

To access the graphics cards we chose to use OpenCL in order to be independent on

graphics card manufacturers and make the software available on as many machines as

possible.

IUCr macros version 2.1.17: 2023/05/02



2

1 . . . Cp

GPU
1

GPU
G

CPU
Cp

CPU
Cp + 1

CPU
1 CPU C

Shared Memory

Phasing
workers

GPU
workers ..

.

. . . . . .

(OpenCL)

access

accessac
ce
ss

computation request signal

computation finished signal

Fig. S1. During iterative phasing (see Fig. 3) the available CPU threads are divided
into phasing and GPU workers. Each phasing worker is running an individual re-
construction, while a smaller number of GPU workers are accepting requests from
the phasing workers to perform parts of the MTIP loop (Hankel transforms) on the
available GPUs. The phasing and GPU workers communicate via simple Boolean
signals, while the data transfer is handled indirectly via shared memory.

The following performance statistics where calculated on a single node running

two AMD EPYC 7543 processors with a total of 64 physical CPU cores that access

512GB of RAM and two Nvidia RTX A6000 graphics cards with 48GB of memory

each. Fig. S2 shows a comparison between computation times for three-dimensional

MTIP reconstruction using 15 iterations of (60× HIO, 1 × SW, 40× ER) followed by

a refinement stage of 200× ER. In these reconstructions 70 spherical harmonic orders

with a constant angular sampling of 70 polar and 140 azimutal grid points were used

while the number or radial grid points was varied from 64 to 256 with a step size of

16. Finally the error metric computed in each loop iteration is the one defined as Ereal

in equation (41b).

As can be seen in Fig. S2(a) the run-time of the presented algorithm depends linearly

on the number of radial grid points, which is in agreement with the fact that all

individual algorithm parts, except for the Hankel transforms, depend at most linear

on the radial grid size. This is a good indication that no computational bottlenecks in

memory or compute units where reached for the specified parameter ranges.
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Furthermore, we observe an approximately constant multiprocessing speedup of

around 28 times, which corresponds to roughly 50% of the theoretically attainable

speedup, that is equal to the number of reconstructions executed in parallel (57 in the

given example). These speedups show that the multiprocessing scheme depicted in

Fig. S1 works as intended and the forced sequential access to individual GPUs is not

breaking the CPU parallelization significantly. GPUs are currently exclusively used

to compute the Hankel transforms (38a-39c), since their calculation would otherwise

dominate the computation time. Moreover, the number of required computation steps

for the Hankel transform depends quadratically on the number of radial grid points

N . The overall linearity in increase of the computation time is a good indication

that, within the tested radial grid sizes, the GPUs are able to compute each Hankel

transform simultaneously at all considered radial grid points.

The relative time fraction a phasing loop spends on GPU operations, i.e. Hankel

transforms, can be seen in Fig. S2(b) and is for all radial grid sizes smaller than 8%.

This low value poses a future upgrade path for the presented algorithm in which also

the harmonic transform calculations, which currently are the most time consuming

operations, could be performed on GPUs.
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Fig. S2. Phasing performance of xFrame for 3D reconstructions of Model A as a func-
tion of the radial grid size N . (a) Phasing runtime and multiprocessing speedup.
The runtime for a single reconstruction t1 is compared to the total runtime t57 for 57
reconstructions running in parallel. The multiprocessing speedup is determined as
57 · t1/t57. The results were averaged over 10 independent runs for single and paral-
lel reconstructions, with the depicted error bars indicating the standard deviations
in t1 and t57. (b) Average runtime distribution among different types of computa-
tions involved in the phasing loop are illustrated for one of the 57 reconstruction
processes running in parallel. Most of the phasing time is spent in the categories
Harmonic transform (spherical harmonic transforms), SVD [solving the Procrustes
problem in equation (32)], and Projections (reciprocal and real-space projections,
including HIO, ER and SW), and less in Array allocation (numpy methods array or
copy), Error metric [calculating Ereal, see equation (41b)], Hankel transform (GPU)
[Hankel transforms (39) implemented on GPUs] and Other (computation time that
is not associated with any other category above).

S2. Alignment routine for 2D reconstructions

In Section 3.4 in the main text we noted that the overall orientational freedom of a

particle allows us to freely specify, at reconstruction stage, an unknown phase factor

un0 for a single chosen harmonic order n0. In doing so, the corresponding expan-

sion coefficient In0(q) of the single-particle intensity becomes completely defined. This

causes the space of possible rotation states of any reconstruction to become finite,

since only those rotations remain allowed that leave In0(q) unchanged. Consequently,

the number of possible values for the remaining unknown phase factors un also be-

comes finite. After completing a particular reconstruction the determined values of un
IUCr macros version 2.1.17: 2023/05/02
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can be modified by several rotation operations that bring each reconstruction into a

common (reference) rotation state. Below we describe such an alignment algorithm.

In equations (7) and (43a) we noted how a rotation by an angle ϕ in SO(2) acts on

the intensity harmonic coefficients In(q), and the experimentally accessible quantities

ṽn(q). Using this rotation action and demanding the invariance of un0 results in

un0e
in0ϕj = un0 , ϕj = j

2π

n0
, j = 0, . . . , n0 − 1. (S1)

Thus, there are n0 distinct rotation angles ϕj that leave un0 invariant upon the rotation

action. Since all of these rotations are integer multiples of ϕ1, they lead to n0 possible

global rotation states attainable by each individual reconstruction. The task here is to

bring all individual reconstructions to the same global rotation state with matching

phase factors un.

Given any other harmonic order n1 6= n0, we can apply one of the rotations ϕj that

transform arg(un1) to some unique value, while leaving un0 unchanged. For example,

we may request arg(un1) to take the minimum possible value after wrapping into the

interval (0, 2π), that is

argmin
ϕ∈{ϕj}

(
mod[arg(un1) + n1ϕ, 2π]

)
, (S2)

and apply any of the rotations ϕj that solve the minimization problem (S2). In equa-

tion (S2) “mod” stands for the modulo operation used for phase wrapping.

After aligning the phase for the harmonic order n1, only those rotations states ϕj

remain possible, which leave both un0 and un1 invariant under rotation. The invariance

condition for order n1 takes a form similar to equation (S1), that is

un1e
in1ϕk = un1 , ϕk = k

2π

n1
, k = 0, . . . , n1 − 1. (S3)

Clearly, only those rotations ϕj leave both un0 and un1 invariant, which are present

in both sets of rotations, {ϕj} and {ϕk}, defined in equations (S1) and (S3), corre-

spondingly. The set A of such rotations can be determined as a result of intersection
IUCr macros version 2.1.17: 2023/05/02
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of the two sets of rotations, e.g. A = {ϕj} ∪ {ϕk}. The number of rotations g1 in

the set A is equal to the greatest common divisor of n1 and n0, i.e. g1 = gcd(n1, n0).

These g1 rotation states can be considered in the following steps to align the remaining

harmonic orders. Notice, that if (in the example above) n1 would be a multiple of n0,

then g1 = n0, and there are no rotation states in the set {ϕj} that may alter arg(un1).

Hence, all orders n that are multiples of n0 may be excluded from the alignment

procedure, since the corresponding arguments arg(un) cannot be further altered.

This allows us to define an algebraic alignment procedure, in which we successively

choose harmonic orders n, and use the remaining rotational states to project arg(un)

to its lowest possible value. The complete alignment algorithm can be formulated in

steps as follows (see an example of its application in Fig. S3 for n0 = 12, n1 = 8, and

n2 = 6):

1. (Before reconstruction process) Define a sorted set of harmonic orders O = {nt},

with t ≤ tmax, where tmax is the total number of harmonic coefficients considered

in the reconstructions. Set un0 = 1 during the iterative phasing.

2. (After completing the reconstruction) In the 0-th alignment iteration (i = 0),

compose a set A with possible global rotation states {ϕj}, where ϕj are defined

in equation (S1), and set g0 = n0.

3. Remove all multiples of gi from the set O. If O is empty (or gi = 2) the alignment

is finished, otherwise start the next iteration (i → i+ 1) in the next step.

4. Choose ni to be the first remaining element of O. Choose one of the rotations

ϕj from the set A that solves the minimization problem (S2) for ni, and apply

this rotation to all harmonic orders nt present in the current set O, so that the

updated phases are determined as arg(unt) = mod[arg(unt) + ntϕj , 2π].

5. Compose a set B with rotation states {ϕk} determined for the harmonic order
IUCr macros version 2.1.17: 2023/05/02
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ni according to equation (S3).

6. Update the set of remaining free rotations A by intersecting it with the set B,

that is A = A∪B = {ϕj}∪{ϕk}. The updated set A contains gi = gcd(ni, gi−1)

rotation angles. Go to step 3.

Requiring the removal of all multiples of gi (step 3) removes all orders whose phase

factors can not be changed by the remaining rotations in A. Stated differently, this

condition ensures that gi < gi−1, which means that the number of free rotations

decreases after each alignment iteration. This causes the algorithm to stop after a

finite (and typically small) number of iterations.

For robust performance of the algorithm it is important to sort the orders nt in the

set O according to the magnitude of the harmonic coefficients |Int | so that the most

significant orders correspond to low indices t. To achieve this we ordered the intensity

harmonic coefficients in descending order of their L2-norms determined as

||In|| =
√∑

k

|In(qk)|2qk =

√∑
k

|ṽn(qk)|2qk, (S4)

where ṽn(qk) are the elements of the projection matrices ṽn introduced in equation

(15). The matrices ṽn for small momentum transfer values qk tend to be noisy, there-

fore it might be appropriate to exclude the low-q area from the summation in equation

(S4).

After completing the alignment process, individual aligned reconstructions are unique

up to point inversion (provided Friedel’s law is satisfied). This final ambiguity is re-

solved using equation (45) as described in Section 3.4 in the main text.
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Fig. S3. Illustration of the alignment algorithm, where the specified values of param-
eters correspond to the beginning of each alignment iteration. The values of phases
arg(un) (corresponding to the beginning of each alignment iteration) are specified
for the respective orders n provided in the original set O at i = 0. They are shown
in the plots as solid black vertical lines, while the dashed lines signify all other pos-
sible values permitted by the set of rotations A in a particular iteration. The orange
rectangles highlight the harmonic order whose phase is constrained in a particular
iteration. The left most figure displays iteration i = 0 directly after the reconstruc-
tion, in which we enforced u12 = 1 for n0 = 12. In iteration i = 1 we identified,
for harmonic order n1 = 8, the rotation π

3 in the set A as the one producing the
minimal phase of u8, that is arg(u8) = mod[53π + 81

3π, 2π] =
π
3 . This rotation is

then applied to all orders present in the list O for the current iteration. The set
A is then reduced according to step 6 of the algorithm, so that the updated set A
contains only g1 = 4 rotation angles at the beginning of iteration i = 2. We then
fix the phase of n2 = 6, and since g2 = 2 the alignment process is completed after
rotating the phases of the remaining harmonic orders in O by π

2 . The final phases
arg(un) for the aligned reconstruction are displayed in the right most figure.
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Fig. S4. (a)-(f) Averaged 3D reconstructions of Model B (human apoptosome) deter-
mined from single-particle scattering data for lmax = 23, 31, 39, 47, 63 and 127, cor-
respondingly. Isosurfaces are taken at 15% of the maximal density of the respective
reconstructions. (g) PRTF curves corresponding to the reconstructions in (a)-(f),
showing a gradual decrease of resolution when restricting lmax to lower orders.

S3. Reconstructions from multiple-particle FXS data

To test xFrame performance on a multiple-particle scattering dataset, we used a stack

of 105 simulated single-particle diffraction patterns and computed a set of 105 incoher-

ently summed multi-particle patters, where each multiple-particle scattering pattern

IUCr macros version 2.1.17: 2023/05/02
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is formed by randomly selecting and summing subsets of 10 single-particle patterns.

By normalizing the extracted invariants according to equations (6) and (11) with

Np = 10, and performing reconstructions using settings as described in Section 5 of

the main text we obtained the averaged reconstructions shown in Fig. S5. As one can

see, the results look very similar to those obtained for single-particle case (compare

with Fig. 7 in the main text).

Reconstructions obtained from the multiple-particle FXS data are very sensitive to

the relative scaling of the zero-order (B0) and higher order invariants, that is, to the

assumed number of particles Np. As it is demonstrated in Fig. S6, for deviations of

about 20% from the correct value for Np, the averaged reconstructions still display

most pronounced features of the particle shape, while the internal density distribution

notably deviates from the expected one (see Fig. 5 in the main text).

IUCr macros version 2.1.17: 2023/05/02
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Fig. S5. Averaged reconstructions from the simulated 10-particle scattering patterns,
plotted in the same way as in Fig. 7 of the main text.

IUCr macros version 2.1.17: 2023/05/02



12

0.1 0.5 0.8 1 1.2 2 10

Assumed number of particles Np

Fig. S6. Reconstructions from single-particle scattering data produced while assuming
different number of particles Np in equation (11). Each reconstruction is a result
of averaging over 50 independent reconstruction runs. The three averages for Np =
0.8, 1 and 1.2 are visualized by cutting isosurfaces at 15%, 30%, and 90% of the
maximal density, while for Np = 0.1 and Np = 10 the isosurface at 15% is plotted.
Poorly reconstructed density variations are clearly visible in the averages at Np =
0.8 and 1.2.
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Fig. S7. Relative difference, in Frobenius norm || · ||Fq , between the weights ωMP =
ωl(p, k) generated from the midpoint rule [equation (38c)], and the weights (a)
ωZ from Zernike series approximation [equation (68)], as well as (b) ωCS from co-
sine/sine series approximation [equations (58)], as function of the considered expan-
sion cutoff smax. The Frobenius norm of ωl(p, k) is given by

√∑L
l

∑N
p,k |ωl(p, k)|2,

and was computed for L = 63 and various radial grid sizes N specified in the fig-
ure legends. The difference between the quadrature weights obtained by different
approximations decreases for arbitrary large smax.
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S4. Challenges of experimental measurements and data processing

The FXS approach is suitable for analysing the single-particle (Np = 1) and multiple-

particle (Np > 1) scattering, however these two types of measurements face different

experimental challenges. For illustrative purpose, let’s consider the 3D case (see Sec-

tion 2.2 in the main text), while similar arguments apply also in the 2D case. As

it follows from equation (11) in the main text, B0(q, q
′) for l = 0 is scaled by N2

p ,

while all higher-order rotational invariants Bl(q, q
′) for l > 0 are scaled by Np. Notice,

that B0(q, q
′) is directly related to the mean SAXS intensity, and Bl(q, q

′) for l > 0

are related to the angular intensity fluctuations about the mean value. This means

that for a large number of particles Np the angular fluctuations become very small

compared to the SAXS intensity, which makes their experimental detection very chal-

lenging. The ratio |Bl(q, q
′)|/B0(q, q

′) (for l > 0) is maximal for Np = 1, therefore,

the single-particle case represents the “easiest” situation in terms of measuring higher

order rotational invariants. However, such single-particle measurements might be very

difficult to perform in solution, where solvent scattering becomes a limiting factor.

Therefore, moving to the multiple-particle case (Np > 1) might be necessary to en-

hance scattering from particles. Thin cylindrical and sheet liquid jets might be of great

help in this case to reduce background scattering from solvent. The general recom-

mendation is still to keep the number of illuminated particles small enough to preserve

high angular fluctuations. This requires tight X-ray focusing and high photon flux. It

is known that XFEL pulses have fluctuating intensity profiles, which can be further

shaped by the applied focusing optics. This means that not all illuminated particles

are exposed to the same X-ray intensity, and partially irradiated particles may also

exist. These factors will contribute to the uncertainty in the number of illuminated

particles Np in each XFEL shapshot (see Section S3), therefore careful analysis will be

required to estimate these effects on the extracted rotational invariants. In the case of

IUCr macros version 2.1.17: 2023/05/02
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single-particle measurements the effects due to finite beam size and incident intensity

fluctuations can be mitigated by selecting strong hits and normalizing each diffraction

pattern by the incident intensity.

The effect of particle concentration should be estimated in the multiple-particle

measurements, since inter-particle interference can distort the measured CCFs. Inter-

particle interference manifests itself in the form of relatively sharp peaks in the cross-

correlation function CM (q, q′,∆) at q = q′, ∆ = 0 and ∆ = π, when the average inter-

particle distance in a multiple-particle system approaches the particle size. Therefore,

the sample should be sufficiently dilute to avoid the undesirable interference effects.

Following a usual practice of conventional SAXS measurements seems to be an ap-

propriate strategy. A common approach in SAXS is to perform concentration series

measurements, which allow one to detect the interference effects in the low-q region

of the SAXS curves. The same approach should be applicable in FXS to determine

B0(q, q
′) without undesirable interference effects, which is directly related to SAXS

profiles. By monitoring the behaviour of the CCF at the specified locations (q = q′,

∆ = 0 and ∆ = π) measured at different concentrations, it should be possible to esti-

mate the magnitude of the interference effects and choose a suitable concentration. It

is also known, that (both in the case of single- and multiple-particle X-ray scattering)

the CCF CM (q, q′,∆) has generally higher noise contribution at q = q′ and ∆ = 0

due to self-correlation of noise. Binning the sufficiently oversampled diffraction pat-

terns helps to reduce the effect of shot noise. At flat Ewald sphere conditions and the

absence of inter-particle interference, it is possible to use the symmetry property of

the CCF, CM (q, q′,∆) = CM (q, q′,∆+ π), to replace the function value in the noisy

region.

Another practical problem is particle heterogeneity/polydispersity, which is nat-

urally present in many types of samples and may impact the resolution of the FXS
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reconstructions, or even prevent successful reconstructions. While heterogeneity/poly-

dispersity can be tolerated up to some degree (see e.g., (Kurta et al., 2017)), it un-

avoidably effects the CCFs in the case of multiple-particle scattering measurements.

Single-particle measurements are advantageous in this respect, providing a possibility

to classify diffraction patterns corresponding to different particle sizes/conformations,

and perform correlation analysis and structure reconstructions for each particle class

individually.

Various types of systematic errors (e.g., missing data, various detector artefacts,

uncompensated background scattering) can affect the CCF in a specific way, both in

the case of single-particle and multiple-particle X-ray measurements. FXS can tolerate

quite a lot of missing data on individual diffraction patterns by compensating for the

lack of data by measuring more diffraction patterns. More specifically, for the central

missing region similar rules apply as in conventional CDI. The MTIP algorithm can

tolerate partial missing data in the central speckle, but normally fails to achieve suc-

cessful reconstructions if the entire central speckle is missing. Such situations should

be experimentally avoided by carefully considering the detector geometry before the

experiment. Other types of missing data (gaps between detectors, masked pixels and

extended masked regions) can be tolerated much easier. From the analysis of equation

(16) in the main text it follows, that as soon as the denominator (sum of products of

the binary mask terms) is nonzero for all values of ∆t, at given qk and qp, the CCF is

defined at all points. In other words, this means that it should be possible to success-

fully determine the CCF if only two unmasked pixels on each diffraction pattern are

available (for particular qk and qp), while averaging the CCFs over a very large number

of measured diffraction patterns. Notice, that such measurements were done in the past

by using just two point detectors, see, for instance, (Clark et al., 1983). If the denom-

inator in equation (16) is 0 at given qk, qp and ∆t, the CCF is undefined in this point.
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Notice, that depending on the number of contributions in the sum in the denominator

of equation (16), the convergence of the CCF CM (qk, qp,∆t) at different points will

vary, depending on a particular distribution of the missing data. In practice, the con-

vergence of the CCF can be estimated from the phase maps of the Fourier coefficients

of the CCF [see Supplementary in (Kurta et al., 2017)]. The presence of unaccounted

systematic detector artefacts/errors may significantly distort the CCF or even prevent

its correct determination, especially in the multiple-particle measurements with weak

angular fluctuations. Since systematic artefacts are rather case-specific, there is no

general recipe and each particular situation may require specific detector corrections.

Using more complex forms of the CCF may help to mitigate certain systematic errors

and uncompensated background [see, e.g., (Kurta et al., 2017)]. Generally, it is always

helpful to perform simulations to estimate the effect of various experimental param-

eters (e.g., interparticle interference, noise, background, missing detector data, etc).

We refer the reader to the following selected publications (Altarelli et al., 2010; Kirian

et al., 2011; Kurta et al., 2012; Kurta et al., 2013; Pedrini et al., 2013; Mendez

et al., 2016; Martin, 2017; Kurta et al., 2017; Pande et al., 2018), where the effect of

various experimental parameters was considered in simulations or experimental data

processing.
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