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I. CONSTRUCTION OF THE DISPLACEMENT FIELD
OF A DISLOCATION HALF-LOOP

Figure 1 shows a construction of the displacement field
of a dislocation half-loop. The building blocks are an an-
gular dislocation with one arm parallel to the surface and
the other arm perpendicular to it, and a straight dislocation
perpendicular to the surface. The explicit expressions for
the respective displacement fields are given in Sec. II and
III below. First, we construct an L-shaped dislocation con-
sisting of a half-infinite dislocation parallel to the surface
and a finite dislocation segment from it to the surface, see
Fig. 1(a). It is obtained by subtracting the displacement field
of the straight dislocation from that of the angular disloca-
tion. The difference between the displacements of two such
L-shaped dislocations, lying in the same plane and shifted
with respect to each other, gives rise to a dislocation half-loop
with the misfit dislocation segment parallel to the surface and
two threading dislocation segments from it to the surface, as
shown Fig. 1(b).

II. DISPLACEMENT FIELD OF AN ANGULAR
DISLOCATIONWITH ONE ARM PARALLEL TO THE

SURFACE AND THE OTHER ARM PERPENDICULAR TO
IT

Comninou and Dundurs [1] derived explicit expressions
for the displacement field of an angular dislocation with one
arm perpendicular to the free surface and the other arm mak-
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FIG. 1. Construction of the displacement field of a dislocation
half-loop: (a) subtract the displacement field of a dislocation per-
pendicular to the surface from the displacement field of an angular
dislocation to obtain an L-shaped dislocation and (b) take the differ-
ence between the displacement fields of two L-shaped dislocations
shifted with respect to each other. All dislocations have the same
Burgers vector.

ing an arbitrary angle V to the surface. Several typos are
listed by Thomas [2]. These expressions are simplified be-
low for the case of the second dislocation arm parallel to the
surface, V = c/2. In this case several 0/0 uncertainties have
to be resolved, so using general formulae for V = c/2 would
require some caution.

We use a coordinate system with the origin at the surface,
the --axis parallel to the surface, the /-axis along the inner
surface normal, the dislocation lies in the -/-plane, the
distance between the surface and the dislocation arm parallel
to it is 0 [see Fig. 1(a) and Fig. 1 in the main text of the
paper]. A relation to three coordinate systems introduced by
Comninou and Dundurs [1] is

- = H1 = H̄1 = I3 = −Ī3, (1)
. = H2 = H̄2 = I2 = Ī2, (2)
/ = H3 + 0 = H̄3 − 0 = 0 − I1 = Ī1 − 0. (3)

The following quantities are defined:

'2 = -2 + .2 + (/ − 0)2, '̄2 = -2 + .2 + (/ + 0)2, (4)

� = − arctan
.

-
− arctan

.

/ − 0 − arctan
.'

- (/ − 0) , (5)

�̄ = − arctan
.

-
+ arctan

.

/ + 0 + arctan
. '̄

- (/ + 0) . (6)

Each component of the displacement vector is a sum of
two terms, D 9 = D∞

9
+ D2

9
( 9 = 1, 2, 3). The first term is

the displacement field of the dislocation in the infinitely ex-
tended material plus its image, and the second term releases
the residual stress at the surface. The displacements are
written separately for each component of the Burgers vector
B = (�1, �2, �3). The �2 and �3 components of the Burg-
ers vector correspond to the edge and the screw threading
dislocation arms involved in the calculations of the present
paper, and the corresponding formulae for �1 are included
for a sake of completeness.
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Burgers vector (0,B2,0)
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Burgers vector (0,0,B3)
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III. DISPLACEMENT FIELD OF A STRAIGHT
DISLOCATION PERPENDICULAR TO THE SURFACE

We present here expressions for the displacement fields
of the edge and screw straight dislocations perpendicular
to the surface of an elastic half-space, see Eqs. (213) and
(220) in Ref. [3]. The sums of these displacement fields
and those above for the angular dislocations with the Burgers

vectors (0, �2, 0) and (0, �3, 0) give the L-shaped dislocation
in Fig. 1(a). To do this, the direction of the /-axis is reversed
with respect to Ref. [3], and the displacement field for the
edge dislocation is rotated by 90◦. We define

A2 = -2 + .2 + /2. (25)

Then,
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IV. X-RAY DIFFRACTION INTENSITY IN THE
STOKES-WILSON APPROXIMATION

Stokes and Wilson [4] showed that the X-ray diffraction
intensity distribution in a highly distorted crystal is equal to

the probability density distribution of the strain. The lim-
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its of applicability of this approximation were considered in
Ref. [5]. It was shown that the Stokes-Wilson approximation
is applicable as long as the long range order is not seen as a
coherent peak in the diffraction profiles. The relevant strain
components depend on the diffraction geometry. Stokes and
Wilson developed their approximation for powder diffraction,
in which case the normal strain in the direction of the diffrac-
tion vector is involved. The corresponding components for
the reciprocal space maps and skew diffraction geometry of
singe crystals are derived below.

A. Reciprocal space maps

A general expression for the X-ray diffraction intensity
from a crystal containing lattice defects is

� (q) =
∬

� (r1, r2) exp [8q · (r2 − r1)] 3r13r2, (30)

where the integration is performed over the volume of the
crystal, r1 and r2 are two points inside the crystal and q is a
small deviation of the diffraction vectorQ from the reciprocal
lattice point. The correlation function � (r1, r2) is

� (r1, r2) = 〈exp {8Q · [U(r2) − U(r1)]}〉 , (31)

whereU(r1) andU(r2) are total displacements at these points
due to all defects in the crystal and 〈. . .〉 denotes a statistical
average over the distribution of the defects.

For an epitaxial film with the I-axis along the film normal,
the correlation function can be written as � (G2 − G1, H2 −
H1, I1, I2), due to a translational invariance in the lateral
plane (but not in the I-direction). We consider reciprocal
space maps measured in a standard triple-crystal laboratory
X-ray diffractometer. The incident and diffracted X-rays are
collimated in the scattering plane (@G , @I) and integrated
over the wave vector component @H normal to it (the “vertical
divergence” in a standard diffractometer setupwith horizontal
scattering plane). The integration of the @H-dependent term
exp

[
8@H (H2 − H1)

]
in Eq. (30) over @H in the infinite limits

gives a delta function X (H2 − H1), and the integral (30) is
simplified to

� (@G , @I) =
∞∫

−∞

3G

C∬
0

3I1 3I2 � (G, I1, I2)

× exp [8@GG + 8@I (I2 − I1)] . (32)

The argument H = 0 in the correlation function is omitted
hereafter for simplicity.

For a high dislocation density, only correlations be-
tween closely spaced points are important. The differ-
ence of displacements in Eq. (31) is then approximated as
Q · [U(r2) − U(r1)] ≈ ^GG + ^Ie, where e = I2 − I1,
^G = m (Q·U)/mG, and ^I = m (Q·U)/mI. Then, the statistical

mean (31) can be written as

� (G, e, I) =
∞∬

−∞

%(^G , ^I , I) exp (8^GG + 8^Ie) 3^G 3^I .

(33)
Here %(^G , ^I , I) is the joint probability distribution of the
respective strain components taken at a depth I. The integral
over I1 and I2 in Eq. (32) can be written as an integral over I
and e, and the latter integral can be extended in the infinite
limits, since only small e are relevant. Then the Fourier
integral (32) gives

� (@G , @I) =
C∫

0

%

[
@G = −

m (Q · U)
mG

, @I = −
m (Q · U)
mI

, I

]
3I.

(34)
This equation replaces Eq. (10) in Ref. [5] where the product
of probabilities is written instead of the joint probability.

The Monte Carlo implementation of Eq. (34) is straight-
forward. First, a pixel array is defined for � (@G , @I) to cover
the range of the wave vectors of interest. Then dislocations
are generated according to their density and distribution. The
sum of their displacements is used to calculate the strain at
the point (0, 0, I), where I is uniformly seeded from 0 to C.
Since the analytical differentiation of the displacements for
an angular dislocation presented above would lead to very
bulky expressions, we calculate derivatives of the displace-
ments required in Eq. (34) from a difference of the displace-
ments at two closely spaced points. After calculating the
strain components @G and @I in Eq. (34), 1 is added to the
corresponding pixel of the array � (@G , @I). The dislocation
generation is repeated.

B. Skew diffraction geometry

Figure 2(a) reproduces a sketch of the skew diffraction
geometry from Ref. [6]. The details of the geometry and
the definition of the angles can be found in the cited paper.
Our aim now is to average the intensity (30) over the plane
perpendicular to the direction of the wave vector of the scat-
tered wave Kout. Figure 2(b) shows the scattering plane (the
plane containing the wave vectors of the incident Kin and the
diffracted Kout waves). On sample rotation by an angle l,
the wave vector q is directed perpendicular to Q and has a
length @ = &l. Its component along the diffracted beam
direction is @ ‖ = &l cos \, where \ is the Bragg angle.

The coordinates in Fig. 2(a) are chosen so that the GI plane
is perpendicular to the surface and contains the wave vector
Kout. The wave vectors in this plane are shown in Fig. 2(c).
The integration of the intensity over the plane perpendicu-
lar to Kout is the integration over @H perpendicular to this
plane and the integration over @⊥ in this plane. The first
integration is carried out as above and gives Eq. (32) with the
present choice of the axis directions. To perform the second
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FIG. 2. Sketch of skew diffraction geometry: (a) three-dimensional picture reproduced from Ref. [6], (b) wave vectors in the scattering
plane, (c) wave vectors in the plane normal to the surface and containing the scattered beam direction Kout.

integration, we express the wave vectors as

@G = @ ‖ cosΦ − @⊥ sinΦ, (35)
@I = @ ‖ sinΦ − @⊥ cosΦ,

so that

@GG + @I (I2 − I1) = [G cosΦ + (I2 − I1) sinΦ] @ ‖ (36)
+ [−G sinΦ + (I2 − I1) cosΦ] @⊥.

Integrating the intensity (32) over @⊥ gives rise to a delta
function X (−G sinΦ + (I2 − I1) cosΦ). Substituting G =

(I2 − I1) cotΦ in Eq. (36) gives

@GG + @I (I2 − I1) = @ ‖ (I2 − I1)/sinΦ, (37)

and the diffracted intensity is

� (@ ‖) =
C∬

0

3I1 3I2 � ((I2 − I1) cotΦ, I1, I2)

× exp
[
8@ ‖ (I2 − I1)/sinΦ

]
. (38)

This equation coincides with Eq. (6) in Ref. [7].
In the limit of threading dislocations in an infinitely thick

crystal, the correlation function in Eq. (38) can be written
as � ((I2 − I1) cotΦ), since the displacements become I-
independent. Substituting b = I cotΦ reduces this equation
to

� (@ ‖) =
∞∫

−∞

� (b) exp
(
8@ ‖b/cosΦ

)
3b. (39)

This equation coincides with Eq. (9) in Ref. [6].
In the Stokes-Wilson approximation for Eq. (38), we write

Q · [U(r2) − U(r1)] ≈
m (Q · U)
mG

(I2 − I1) cotΦ

+ m (Q · U)
mI

(I2 − I1) (40)

= ^e/sinΦ, (41)
where again e = I2 − I1 and

^ = cosΦ
m (Q · U)
mG

+ sinΦ
m (Q · U)
mI

. (42)

Since the wave vector of the diffracted beam Kout makes an
angle Φ to the G axis, this equation can be written as

^ = K̂out · ∇ (Q · U) , (43)

where K̂out is the unit vector in the direction of Kout. The
statistical average in the correlation function (31) can be
written as

� (e, I) =
∞∫

−∞

%(^, I) exp(^e/sinΦ) 3^. (44)

The integral (38) then gives

� (@ ‖) =
C∫

0

%

(
@ ‖ = −K̂out · ∇ (Q · U) , I

)
3I. (45)

For infinitely long threading dislocations, when distortions
do not depend on I, this equation reduces toEq. (2) inRef. [8].
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