

Volume 57 (2024)

Supporting information for article:

Bending the bonds: unveiling halogen interactions in the elastic polymorph of 2,5-bis(3-bromophenyl)furan

Konrad Dyk, Vasyl Kinzhybalo, Yuriy Horak, Serhii Butenko, Miłosz Siczek and Daniel M. Kamiński

Polymorph	α	β	γ
Empirical formula	$C_{16}H_{10}Br_2O$	$C_{16}H_{10}Br_2O$	$C_{16}H_{10}Br_2O$
Conformer	Ι	III	III
Formula weight	378.06	378.06	378.06
Temperature [K]	100	100	100
Crystal system	orthorhombic	orthorhombic	orthorhombic
Space group	$Pna2_1$	Pnma	$P2_{1}2_{1}2_{1}$
a [Å]	8.226(3)	6.217(3)	3.977(2)
b [Å]	13.408(4)	30.110(8)	10.775(5)
c [Å]	12.222(4)	7.180(3)	31.239(8)
Volume [Å ³]	1348.0(8)	1344.1(9)	1338.7(10)
Z	4	4	4
ρ _{calc} [g/cm ³]	1.86	1.87	1.88
Morphological shape	cuboids	hexagonal plate	elongated plate
μ [mm ⁻¹]	6.00	6.02	7.57
F(000)	736	736	736
Crystal size [mm]	$0.44 \times 0.19 \times$	$0.42 \times 0.22 \times$	0.7 imes 0.06 imes
	0.09	0.06	0.02
Radiation	Mo K α ($\lambda =$	Mo K α ($\lambda =$	$Cu K\alpha (\lambda = 1.54184)$
20 range for data collection	0.71075)	0.71073)	1.34104)
[°]	5.81 to 59.02	5.41 to 59.02	5.66 to 151.37
	$-11 \le h \le 11$,	$-8 \le h \le 8,$	$-4 \le h \le 4,$
Index ranges	$-18 \le k \le 17$,	$-40 \le k \le 41$,	$-12 \le k \le 13,$
	$-15 \le l \le 16$	$-9 \le 1 \le 9$	$-39 \le 1 \le 38$
Reflections collected	27898	53049	11796
Index and east nofile attacks	$3505 [R_{int} = 0.0274 P = -$	$1831 [R_{int} = 0.0642 R_{int} = -1.0642 R_{in$	$2/26 [R_{int} = 0.0226 P = -$
Independent reflections	0.03/4, K _{sigma} – 0.02751	$0.0043, \text{K}_{\text{sigma}} - 0.02061$	$0.0550, \text{K}_{\text{sigma}} = 0.02531$
Data/restraints/narameters	3505/1/172	1831/0/88	2726/0/173
$Goodness-of-fit on F^2$	1.05	1.19	1.10
	$R_1 = 0.0218.$	$R_1 = 0.0355.$	$R_1 = 0.0305.$
Final R indexes [I>=2σ (I)]	$wR_2 = 0.039$	$wR_2 = 0.0880$	$wR_2 = 0.0811$
Final B indexas fall data	$R_1 = 0.0284,$	$R_1 = 0.0477,$	$R_1 = 0.0315$,
r mai K muexes [an uata]	$wR_2 = 0.0410$	$wR_2 = 0.0941$	$wR_2 = 0.0815$
Largest diff. peak/hole [e Å ⁻³]	0.54/-0.34	0.73/-0.37	0.59/-0.90

Table S1 Summarized experimental results for the single crystal X-ray diffraction experiments

Figure S1 The molecular view of **MBPF** together with the numbering for the asymmetric part of polymorphs α , β and γ . The anisotropic displacement parameters are at the 50% level of probability. The green dashed line indicate the torsion angle with corresponding to it value also in green.

The bond lengths and angles are very similar for all **MBPF** polymorphs, see **S. Fig. 1**, **S. Table 2**, and **S. Table 3**. The most significant difference between the polymorphic forms α , β and γ is the conformation of the **MBPF** molecule. In the case of polymorph α the bromine atoms are on the same side as the oxygen atom of the furan ring. In the case of polymorphs, β and γ bromine atoms are on the opposite side of the furan's oxygen atom. The torsion angles C3/C4/C11/C12 and C2/C1/C5/C10 for α are equal to 173.23°, whereas the identical torsion angles in the form β are equal to 5.15° and in the γ are 2.25° and -1.83°, see **S. Figure 1**.

The rotation around ϕ_1 and ϕ_2 (see **Figure 1**) is possible due to the absence of steric hindrance in the **MBPF** molecule; thus, both bromophenyl ring substituents can rotate freely about the furan ring in the gaseous phase. The factors that limit number of possible conformations of **MBPF** in the crystals are the interactions with the neighboring molecules.

		α		β		γ
	Bond	Distance	Bond	Distance	Bond	Distance
		[Å]		[Å]		[Å]
Furan ring	01 - C1	1.379(4)	01-C1	1.372(3)	01-C1	1.374(6)
	C1-C2	1.357(4)	C1-C2	1.368(5)	C1-C2	1.340(7)
	C2-C3	1.419(5)	C2-C2*	1.413(9)	C2-C3	1.422(7)
	C4-C3	1.365(5)			C4-C3	1.365(7)
	O1-C4	1.374(4)			O1-C4	1.387(6)
	C5-C1	1.453(5)	C3-C1	1.457(4)	C1-C5	1.462(7)
Phenyl	C5-C6	1.402(4)	C3-C4	1.403(4)	C6-C5	1.406(7)
ring	C7-C6	1.385(4)	C4-C5	1.387(4)	C6-C7	1.385(8)
	C7-C8	1.380(5)	C6-C5	1.384(4)	C8-C7	1.388(7)
	C8-C9	1.391(5)	C7-C6	1.390(5)	C8-C9	1.387(7)
	C9-C10	1.378(5)	C8-C7	1.386(4)	C10-C9	1.386(7)
	C5-C10	1.403(4)	C3-C8	1.402(4)	C10-C5	1.403(7)
	Br1-C7	1.915(3)	Br1-C7	1.901(3)	Br1-C9	1.907(5)
	C11-C4	1.456(5)			C4-C11	1.448(7)
Phenyl	C11-C12	1.399(5)			C12-C11	1.405(7)
Ring	C12-C13	1.373(5)			C12-C13	1.380(7)
	C14-C13	1.394(5)			C14-C13	1.386(7)
	C14-C15	1.388(5)			C14-C15	1.393(7)
	C16-C15	1.381(5)			C16-C15	1.389(7)
	C11-C16	1.405(5)			C16-C11	1.408(7)
	Br2-C15	1.904(3)			Br2-C13	1.894(5)

Table S2The bond lengths in the studied **MBPF** polymorphs at 100 K. The bond lengths aretypical for phenyl rings and furan rings, which indicates their aromatic character. The C-Br distancesare ~ 1.9 Å and are typical for the Caromatic-Br bond lengths.

The bond lengths in the furan and phenyl rings are typical of these systems and are shown in the **S. Table 2**. The C_{aromatic}-Br bond distance is similar in all measured structures, being ~1.9 Å. This is in agreement with the other similar structures (Christensen & Stromme, 1969, Birnbaum & Ferguson, 1969, Matthews, 1965). The valence angles of **MBPF** in all studied crystals are typical of such systems (Sniady *et al.*, 2007, Meng & Wu, 2005, Zong *et al.*, 2016, Jones & Gray, 2002). **S. Table 3** shows all valence angles. Molecular geometries are very similar: the overlay is presented in **S. Fig. 2**.

Figure S2 The structures overlay after mirroring the molecules. **A)** The molecules overlay from the β – blue and γ – red. These two structures adopt conformation **III** and are very similar. **B)** The molecule overlay of structures α (magenta) and β (cyan) differs due to the torsion angles between them. It can be seen that the structure β has one ring out and one in the plane of the furan ring. The structure β has a Z'=0.5 so both parts of the molecule are identical.

	a			β		γ	
	Angle		Angle		Angle		
Furan ring	O1-C1-C2	109.4(3)	01-C1-C2	109.7(3)	01-C1-C2	110.41(42)	
	C1-C2-C3	107.3(3)	C1-C2-C2*	107.2(3)	C1-C2-C3	107.50(44)	
	C4-C3-C2	106.7(3)	C1-O1-C1*	107.8(4)	C4-C3-C2	106.30(43)	
	C4-01-C1	107.1(2)			C1-O1-C4	106.25(34)	
	01-C4-C3	109.5(3)			01-C4-C3	109.54(40)	
	01-C1-C5	116.6(3)	01-C1-C3	117.3(3)	01-C1-C5	116.53(39)	
	C5-C1-C2	133.9(3)	C3-C1-C2	133.0(3)	C5-C1-C2	133.03(45)	
	C1-C5-C10	120.0(3)	C8-C3-C1	119.2(3)	C1-C5-C10	119.58(41)	
	C1-C5-C6	121.1(3)	C1-C3-C4	121.5(3)	C1-C5-C6	121.73(43)	
	C6-C5-C10	118.9(3)	C8-C3-C4	119.4(3)	C6-C5-C10	118.70(43)	
ч	C7-C6-C5	118.8(3)	C3-C4-C5	120.3(3)	C5-C6-C7	120.60(46)	
hen	C8-C7-C6	122.9(3)	C4-C5-C6	120.8(3)	C6-C7-C8	120.82(49)	
yl rii	C7-C8-C9	117.7(3)	C7-C6-C5	118.3(3)	C9-C8-C7	118.38(46)	
ng	C8-C9-C10	121.2(3)	C8-C7-C6	122.4(3)	C8-C9-C10	122.17(44)	
	C5-C10-C9	120.5(3)	C3-C8-C7	118.6(3)	C5-C10-C9	119.30(41)	
	Br1-C7-C6	117.8(2)	Br1-C7-C8	118.2(2)	Br1-C9-C8	119.45(36)	
	Br1-C7-C8	119.2(2)	Br1-C7-C6	119.3(2)	Br1-C9-C10	118.36(34)	
	O1-C4-C11	117.3(3)			O1-C4-C11	117.51(38)	
	C4-C11-C16	121.3(3)			C16-C11-C4	121.90(42)	
	C4-C11-C12	119.8(3)			C12-C11-C4	118.30(41)	
	C11-C4-C3	133.0(3)			C11-C4-C3	132.96(44)	
	C11-C12-C13	120.9(3)			C11-C12-C13	119.25(42)	
P	C12-C13-C14	120.8(3)			C12-C13-C14	122.09(47)	
hen	C15-C14-C13	118.1(3)			C13-C14-C15	118.21(48)	
yl ring	C16-C15-C14	122.2(3)			C16-C15-C14	121.75(48)	
	C11-C16-C15	119.1(3)			C11-C16-C15	118.91(45)	
	C16-C11-C12	118.8(3)			C16-C11-C12	119.80(43)	
	Br2-C15-C16	119.1(2)			Br2-C13-C12	118.05(36)	
	Br2-C15-C14	118.6(2)			Br2-C13-C14	119.86(38)	

 Table S3
 Valence angles in studied MBPF polymorphs

Figure S3 Crystal of γ form with crystallographic directions.

Figure S4 Intermolecular interactions in the crystal net of α polymorph; **A**) general interactions; **B**) interactions that include Br atoms; **C**) C-H... π interactions; **D**) $\pi^{...}\pi$ stacking.

Figure S5 Intermolecular interactions in the crystal net of β polymorph; **A**) interactions between the molecules in the polymorph β ; **B**) Br^{...}Br interactions in the crystal form β ; **C**) C-H^{...} π interactions in the crystal form β .

Figure S6 Intermolecular interactions in the crystal net of γ polymorph; **A**) interactions between the molecules in the polymorph γ ; **B**) C-H^{...}O interactions in the crystal γ ; **C**) interactions between Br atoms and neighboring molecules; **D**) C2-H2^{...} π interaction.

Table S4 Hirshfeld surfaces of studies polymorphs with fingerprint plots

References

Birnbaum, K. B. & Ferguson, G. (1969). Acta Crystall B-Stru B 25, 720-&.

- Christensen, A. T. & Stromme, K. O. (1969). Acta Crystall B-Stru B 25, 657-+.
- Jones, P. G. & Gray, L. (2002). Acta Crystallogr C 58, o282-o283.

Matthews, B. W. (1965). Acta Crystallogr 18, 151-&.

Meng, X. G. & Wu, A. X. (2005). Acta Crystallographica Section E-Crystallographic Communications **61**, 03192-03193.

Sniady, A., Durham, A., Morreale, M. S., Wheeler, K. A. & Dembinski, R. (2007). Org Lett 9, 1175-1178.

Zong, L., Wang, C., Moeljadi, A. M. P., Ye, X. Y., Ganguly, R., Li, Y. X., Hirao, H. M. & Tan, C. H. (2016). Nat Commun **7**.