

J. Appl. Cryst. (2024). 57, https://doi.org/10.1107/S1600576723010221 Supporting information

Volume 57 (2024)

Supporting information for article:

Fast Radon transforms for high-precision EBSD orientation
determination using PyEBSDIndex

David J. Rowenhorst, Patrick G. Callahan and Håkon W. Ånes

https://doi.org/10.1107/S1600576723010221
https://doi.org/10.1107/S1600576723010221
http://journals.iucr.org/j

Supplement: Fast Radon transforms for high precision EBSD

orientation determination using PyEBSDIndex

D.J. Rowenhorst1 P.G. Callahan1 H. W. Ånes2

1 U.S. Naval Research Laboratory, Materials Science and
Technology Division, Washington, DC, USA

2 Norwegian University of Science and Technology, Department of Materials Science and
Engineering, Trondheim, Norway

1 Data availability

Example data, and the ability to recreate the simulated pattern benchmark data are provided at
DOI:10.5281/zenodo.8400425 and DOI:10.18126/H2VW-RRZU

This includes:

• An hdf5 file that contains as-simulated, non-background corrected EBSD patterns and their
simulated orientations which were used to benchmark the accuracy of PyEBSDIndex.

• A Jupyter notebook that explains how to create the patterns using the described noise model,
index the patterns, and compare to the simulated orientations.

• A sample dataset of Ti-6Al-4V EBSD patterns in an EDAX .up1 file format.

• Jupyter notebook that demonstrates how to use NLPAR and PyEBSDIndex to index the
patterns, and reproduce the data presented in the main article.

2 Sub-pixel peak localization

As mentioned in the main article, the location of the Kikuchi band peaks in the Radon transform
can be calculated at a precision higher than integer location of the pixel values. This is done
by fitting a quadratic equation to the pixel intensities, A of the peak location at (x0, y0) and its
nearest-neighbor pixels

A =

 I(x0 − 1, y0 + 1) I(x0, y0 + 1) I(x0 + 1, y0 + 1))
I(x0 − 1, y0) I(x0, y0) I(x0 + 1, y0))
I(x0 − 1, y0 − 1) I(x0, y0 − 1) I(x0 + 1, y0 − 1))

 (1)

1

https://zenodo.org/record/8400425
https://doi.org/10.18126/H2VW-RRZU

The intensity of this neighborhood of pixels is approximated as a 2-D second order Taylor series
at any location, (x, y):

I [x, y] ≈I[x0, y0] + ∂x[x0, y0](x− x0) + ∂y[x0, y0](y − y0)+

∂x2[x0, y0]

2
(x− x0)

2 + ∂xy[x0, y0](x− x0)(y − y0) +
∂y2[x0, y0]

2
(y − y0)

2
(2)

where ∂x[x0, y0] is the partial derivative of the intensity with respect to x and ∂x2[x0, y0] is the
second partial derivative evaluated at the location [x0, y0] . Here, these are approximated with
finite difference kernels operating on the nearest-neighbor intensity matrix, A:

∂x ≈ ∆x =
1

2

 0 0 0
−1 0 1
0 0 0

 ⋆A ∂y ≈ ∆y =
1

2

0 1 0
0 0 0
0 −1 0

 ⋆A

∂x2 ≈ ∆xx =

0 0 0
1 −2 1
0 0 0

 ⋆A ∂y2 ≈ ∆yy =

0 1 0
0 −2 0
0 1 0

 ⋆A

(3)

∂x∂y ≈ ∆xy =
1

4

 1 0 −1
0 0 0
−1 0 1

 ⋆A

where ⋆ indicates the matrix cross-correlation operator1. To solve for the location of the maximum
relative to (x0, y0), the gradient of the Taylor quadratic is set to zero, providing two equations with
two unknowns; substituting in δx = x− x0 and δy = y − y0:

0 = ∇I(x, y) =

[
∂xI(x, y)
∂yI(x, y)

]
=

[
∆x +∆xxδx+∆xyδy
∆y +∆yyδy +∆xyδx

]
(4)

Which is rearranged to: [
−∆x

−∆y

]
=

[
∆xx ∆xy

∆xy ∆yy

] [
δx
δy

]
(5)

This system of equations can then be solved using Cramer’s rule, where the determinant is defined
as:

D = ∆xx∆yy − (∆xy)
2 (6)

and thus:
δx = (∆xy∆y −∆yy∆x)/D

δy = (∆xy∆x −∆xx∆y)/D

thus providing the sub-pixel location of the peak maxima (x, y). Literature has shown that this
can effectively interpolate the sub-pixel location to about 0.1 pixel width [1].

1There can be some level of confusion about convolution and correlation within image processing. Formally,
in a 2-D convolution the kernel is flipped horizontally, then vertically before the element-wise multiplication and
summation, while with cross-correlation, there is no flipping operations. Since most of the kernels of interest in image
processing (and their subsequent incorporation in convolutional neural nets) are symmetric, the two operations provide
the identical result. Here, it is sufficient to say that because the local intensity matrix and the finite difference matrices
are the same size, the cross-correlation is equivalent to an element-wise multiplication between the two matrices, and
then summing all the rows and columns of the result.

2

3 Statistics from simulated pattern test

The attached table provides further statistics for the indexing accuracy test with simulated patterns.
As stated in the main paper, for all methods, the known pattern center ([0.5, 0.7, 0.6] using the
EDAX pattern center notation) was used.

There were two additional indexing trials presented here for PyEBSDIndex using different
pattern dimensions, a set of 60× 60 px patterns, and 240× 240 px patterns. A number of Radon
dimensions with corresponding, DoG kernel sizes were tried for both sets. Interestingly, for the
60 × 60 px, using Radon dimensions of Nθ, Nρ = [180, 120] and σθ, σρ = [2.0, 2.9] provided only
marginally worse accuracy as when these same Radon parameters with the 120× 120 px patterns.
Conversely, there was no significant change in accuracy when indexing the 240 × 240 px patterns
using Radon dimensions of Nθ, Nρ = [360, 240] and σθ, σρ = [4.0, 7.8]. The reasons for this are
somewhat uncertain, other than the noted known inaccuracies in PyEBSDIndex of not accounting
for all the distortions associated with the gnomonic projection, and using a fixed kernel size. An
alternative explanation is that the 120× 120 patterns are near the resolution limits of the master
pattern used to create the simulated patterns. However, this seems highly unlikely as a rough
estimate of the subtended angle of the detector at the simulated pattern center indicates that a
full resolution projected pattern would contain about 1000 pixels per side from the 2k×2k master
pattern.

3

Indexing Method
Pattern Size

(pixels)
PSNR
(dB)

Min Error
(deg.)

Mean Error
(deg.)

95 % Confidence
(deg.)

Max Error
(deg.)

% Indexed Correctly
(< 2°)

%
No solution

PyEBSDIndex 60× 60
(Nθ, Nρ = (90, 60))

AS 0.001 0.088 0.178 1.12 100 0

PyEBSDIndex 60× 60
(Nθ, Nρ = (180, 120))

AS 0.001 0.055 0.109 0.55 100 0

PyEBSDIndex 240× 240
(Nθ, Nρ = (180, 120))

AS 0.000 0.033 0.065 0.52 100 0

PyEBSDIndex 240× 240
(Nθ, Nρ = (360, 240))

AS 0.000 0.034 0.068 0.29 100 0

PyEBSDIndex 120× 120 AS 0.001 0.037 0.073 0.45 100 0
EMDI & BOBYQA 120× 120 AS 0.000 0.014 0.030 0.14 100 0
EMSphInx BW 113 120× 120 AS 0.001 0.119 0.178 1.53 100 0
EMSphInx BW 63 120× 120 AS 0.005 0.207 0.310 2.00 99.97 0
Vendor Hough 120× 120 AS 0.019 0.441 0.636 2.00 99.35 0

PyEBSDIndex 120× 120 25 0.001 0.086 0.175 0.73 100 0
EMDI & BOBYQA 120× 120 25 0.000 0.034 0.077 0.28 100 0
EMSphInx BW 113 120× 120 25 0.001 0.085 0.144 1.39 100 0
EMSphInx BW 63 120× 120 25 0.002 0.151 0.279 2.00 99.98 0
Vendor Hough 120× 120 25 0.012 0.451 0.714 2.00 99.31 0

PyEBSDIndex 120× 120 20 0.001 0.152 0.315 1.28 100 0
EMDI & BOBYQA 120× 120 20 0.000 0.054 0.124 0.81 100 0
EMSphInx BW 113 120× 120 20 0.002 0.112 0.206 1.57 100 0
EMSphInx BW 63 120× 120 20 0.002 0.203 0.400 2.00 99.98 0
Vendor Hough 120× 120 20 0.010 0.480 0.799 2.00 99.27 0

PyEBSDIndex 120× 120 12 0.003 0.536 51.004 2.00 84.26 1.135
EMDI & BOBYQA 120× 120 12 0.000 0.187 0.528 1.99 99.96 0
EMSphInx BW 113 120× 120 12 0.003 0.356 0.765 2.00 99.99 0
EMSphInx BW 63 120× 120 12 0.007 0.626 1.408 2.00 99.05 0
Vendor Hough 120× 120 12 0.008 0.780 55.021 2.00 69.18 0

Table 1: Results of simulated pattern indexing error. AS indicates “as-simulated” patterns with no noise, which is
equivalent to an infinite PSNR value. Unless otherwise noted, the Radon dimensions used were Nθ, Nρ = [180, 120]

4

4 Notes on optimizing GPU compute for EBSD patterns

Graphic processing units (GPUs), as the name implies, are exceptionally well suited for manipulat-
ing images, using thousands of threads to operate in parallel. However, the analysis of millions of
EBSD patterns presents an interesting case for GPU compute. The typical situation envisioned for
most image processing pipelines is a set of filters designed to operate on relatively large photo-like
images, with dimensions of 10s –100s of megapixels not unusual. Thus, most of the examples for
this type of work concentrate on breaking the image into several different tiles, and understanding
how each thread and workgroup can most efficiently work on each tile of the larger image. EBSD
patterns can reach the lower end of these image dimensions, but these cases are relatively rare, and
it is much more common to work with large batches of images that are (60–240 px)2, thus making
it impractical to break them into tiles.

One common bottleneck for GPU compute is the time penalty for fetching data from the global
memory of the GPU into the kernel memory of the operating thread. Again, if operating on a
single large image, one strategy is to operate on vectors of values that are located in consecutive
memory locations on the global memory block, which allows a single vector call to global memory
to fetch multiple values at once. PyEBSDIndex has altered this strategy for working with batches
of small images. The typical method to load a series of patterns into computer memory is to read
the pattern in with column values incrementing fastest, then rows, then slices (in this case slice is
each individual pattern), and indeed this is how all EBSD patterns the authors have encountered
have been stored inside of files. PyEBSDIndex will read in a batch of patterns, and then transpose
them in memory so that the slice direction increments fastest within memory, then the columns,
then the rows. This then allows for using long vectors to batch process the image pipeline. For
instance, a call to perform a calculation on the first column, first row would request a float16,
indicating fetching a 16 element vector from memory at the specified location. Assuming that the
batch of patterns has at least 16 patterns, this then would grab the first column-row for the first
16 patterns, and perform the same operation on all 16 values. Naturally, if the batch of patterns is
not an even factor of 16, then PyEBSDIndex will automatically pad out the needed extra patterns.
While there is overhead for performing the re-ordering of the data in memory, this is significantly
overcome by the dramatic reduction of the number of fetches to global memory needed during the
image processing on the GPU. And it should be also noted that the Radon and convolutional arrays
created on the GPUs are laid out in a similar manner, with the pattern slice value incrementing
fastest in memory. In the authors experience, this change lead to an approximately 3–5× increase
in computational speed on the GPU compared to not using the vectorized memory fetches.

As indicated, PyEBSDIndex operates on all the patterns as using floating point math, with
each pattern and Radon using 32-bit floats. The authors see no significant advantage to using
the extra precision of 64-bit floats in these calculations, thus allowing for using the more common
consumer/gaming GPUs for compute, rather than workstation grade GPUs which have dedicated
computational units for 64-bit floats.

The authors found that one can extract more performance from a single GPU by running
multiple calculation queues on one physical GPU. This is likely because if a single queue is used,
then it is sitting idle while the indexing occurs on the CPU. Furthermore, the GPU can schedule

5

simultaneous tasks such as having one queue transfer data from the main system memory to the
GPU, at the same time that the another queue is calculating. We suspect that this is all very
particular to the exact nature of the calculations within PyEBSDIndex, the authors find that 8–12
simultaneous queues are optimal. PyEBSDIndex will automatically schedule the GPU queues, as
well as decide on a reasonable batch size for the amount of GPU memory, thus removing the need
for the user to tune these parameters. It is unclear to what degree this is particular to OpenCL,
or even each platform’s implementation of OpenCL.

Finally, the authors admit that it is likely the solutions presented here could be far from optimal,
and that there are many computational efficiencies that are not being leveraged. However, we
present this information for others that may want to engage in similar pursuits, and leave it to the
community to decide in the future if it is a guide for what-to-do, or what-not-to-do.

References

[1] Alfonso Alba et al. “Phase correlation with sub-pixel accuracy: A comparative study in 1D and
2D”. In: Computer Vision and Image Understanding 137 (2015), pp. 76–87. doi: 10.1016/j.
cviu.2015.03.011.

6

https://doi.org/10.1016/j.cviu.2015.03.011
https://doi.org/10.1016/j.cviu.2015.03.011

	Data availability
	Sub-pixel peak localization
	Statistics from simulated pattern test
	Notes on optimizing GPU compute for EBSD patterns

