

Volume 57 (2024)

Supporting information for article:

POMFinder: Identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning

Andy S. Anker, Emil T. S. Kjaer, Mikkel Juelsholt and Kirsten M. Ø. Jensen

Supporting information for:

POMFinder: Identifying polyoxometalate cluster structures from pair distribution function data using explainable machine learning

Andy S. Anker¹, Emil T. S. Kjaer¹, Mikkel Juelsholt,^{1,2} and Kirsten M. Ø. Jensen¹*

1: Department of Chemistry & Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark

2: Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK

*Correspondence to kirsten@chem.ku.dk (KMØJ)

Table of Contents

A: Determining if two POM fragments are identical	2
B: Simulation parameters for the simulated data sets used to train POMFinder	3
C: Loss curve for the training of POMFinder	4
D: Refinement parameters for the fits shown in Figure 5-7 in the main paper	5
E: SHAP analysis	7
F: Performance versus the number of datasets	7

A: Determining if two polyoxometalate (POM) fragments are identical

Table S1: Simulation parameters for pair distribution functions (PDFs) used to determine if two clusters are similar. The isotropic atomic displacement parameters (ADP) have been set high to emphasise the general trends in the PDF and not the disorder.

$R_{Range} = 0 - 30 \text{ Å}$
$R_{step} = 0.1 \text{ Å}$
$Q_{min} = 0.2 \text{ Å}^{-1}$
$Q_{max} = 30 \text{ Å}^{-1}$
$Q_{damp} = 0.01 \text{ Å}^{-1}$
$ADP^{Biso} = 1 \text{ Å}^2$

Figure S1: Three examples where the Pearson correlation coefficient is calculated between the simulated PDF of a $W_{12}O_{36}$ cluster and a simulated PDF of a A) $SmW_{10}O_{36}$ cluster, B) $As_2W_{18}O_{62}$ cluster and C) $PW_{12}O_{40}$ cluster.

B: Simulation parameters for the simulated data sets used to train POMFinder and normalisation

Table S2: Parameter range for the simulated data sets.¹ The simulated parameters were determined using hypercube sampling.²

PDF	SAXS
$R_{Range} = 0 - 10 \ \text{\AA}$	$Q_{Range} = 0 - 2 \text{ Å}^{-1}$
$R_{step} = 0.1 \text{ Å}$	Background = $0 - 0.01$

$Q_{min} = 0 - 2 \text{ Å}^{-1}$	DebyeSumRmax = 10^7 Å
$\Omega = 14 - 28 \text{ Å}^{-1}$	Gaussian Noise $RMS = 0 - $
$Q_{\text{max}} = 17 - 20$ A	0.01
$Q_{damp} = 0.01 - 0.04 \text{ Å}^{-1}$	
$ADP^{Biso} = 0 - 2 \text{ Å}^2$	

Figure S2: Normalisation of the PDF. Comparison of the experimental data set of a 0.05 M ammonium metatungstate hydrate, $(NH_4)_6[H_2W_{12}O_{40}]\cdot xH_2O$, solution before and after normalisation.

C: Loss curve for the training of POMFinder

Figure S3: Loss curve for the training of the GBDT algorithm to predict which POM cluster a PDF matches. The training loss converges to zero, while the validation loss is slightly higher (overfitting). This means the model learns to predict perfectly on previously seen data sets, while it has minor disrepancies on unknown data. The mlogloss is defined elsewhere.³

D: Refinement parameters for the fits shown in Figure 4-6 in the main paper

Table S3: Refined parameters for the five best candidate POMs obtained from POMFinder for PDF data analysis. The structures are shown in Figure 4 in the main paper. The B_{iso} value for oxygen is set to 2 Å².

Rank	Probability [%]	Structure	Scale	Expansion/ contraction factor	B _{iso} (metal) [Å ²]
1 st	82.8	A W ₁₁ O ₃₅ Keggin-based fragment from the dimeric K _{5.5} Na7Nd(SiW ₁₁ O ₃₉ (H ₂ O)) ₂ (CH ₃ COO) ₂ (H ₂ O) ₁₀ complex ⁴	1.53	0.989	0.660
2 nd	14.4	A $W_{12}O_{36}$ fragment from the $K_5H(CoW_{12}O_{40})$ (H_2O) ₁₅ crystal ⁵	1.601	1.000	0.738
3 rd	1.5	A $W_{12}O_{40}$ fragment from an ionic crystal structure ⁶ of (Al ₁₃ O ₄ (OH) ₂₄ (H ₂ O) ₁₂)(H ₂ W ₁₂ O ₄₀)(OH)(H ₂ O) _{23.12}	1.505	1.003	0.788
4 th	1.0	A $W_{12}O_{36}$ fragment from the porous inorganic of the form $K_2NaH_2(BW_{12}O_{40})(H_2O)_{12}^7$	1.414	1.004	0.822
5 th	0.2 A $W_{12}Rb_4BO_{43}$ fragment from another ionic crystal ⁸ Rb ₄ (Cr ₃ O(OOCH) ₆ (H ₂ O) ₃ (BW ₁₂ O ₄ ₀)(H ₂ O) ₁₆		0.514	1.000	0.000

Table S4: Refined parameters for the five best candidate POMs obtained from POMFinder for analysis of rapid acquisition PDF data. The structures are shown in Figure 5 in the main paper. The B_{iso} value for oxygen is set to 2 Å².

Rank	Probability [%]	Structure	Scale	Expansion/ contraction factor	B _{iso} (metal) [Å ²]
1 st	65.0	A W9SiO34 fragment from a Keggin-based	1.086	0.994	0.395

		$Na_{2}[C(NH_{2})_{3}]_{2}[\{(CH_{3})_{2}Sn(H_{2}O)\}_{3}(A-\alpha-SiW_{9}O_{34})]\cdot 10H_{2}O \text{ crystal}^{9}$			
2 nd	27.4	A W ₁₂ O ₃₆ fragment from the crystal structure of a porous framework based on Keggin polyoxoanions, K ₂ NaH ₂ [BW ₁₂ O ₄₀]·12H ₂ O ¹⁰	0.848	1.001	0.498
3 rd	1.6	A W ₂₀ O ₆₄ fragment from a pseudo- Keggin based crystal ¹¹ with chemical composition H(2- x)Bi ₂ W ₂₀ O ₇₀ (HWO ₃)	1.053	0.956	0.373
4 th	1.6	A SbW ₉ O ₃₀ fragment from a K ₁₁ [Sb ₃ (SiW ₉ O ₃₄) ₂]·31H ₂ O crystal structure ¹²	1.228	0.983	0.325
5 th	0.9	A V ₁₅ O ₄₂ fragment from the bicapped Keggin structure ¹³ (TMA) ₃ H ₆ V ^V ₁₅ O ₄₂ ·2.5H ₂ O (TMA = tetramethylammonium)	1.830	0.952	2.174

Table S5: Refined parameters for the five best candidate POMs obtained from POMFinder for analysis of rapid acquisition PDF data. The structures are shown in Figure 6 in the main paper. The B_{iso} value for oxygen is set to 2 Å².

Rank	Probability [%]	Structure	Scale	Expansion/ contraction factor	B _{iso} (metal) [Å ²]
1 st	80.7	A W ₄₈ O ₁₅₂ fragment from the polyanion K _{26.5} Li _{9.5} [H ₄ As ₈ W ₄₈ O ₁₈₄]·90H ₂ O ¹⁴	1.883	0.957	3.284
2 nd	8.6	A W ₁₂ O ₄₂ fragment from the acidic sodium polytungstates ¹⁵ Na ₅ [H ₇ W ₁₂ O ₄₂]·20H ₂ O	1.176	0.989	0.503
3 rd	1.4	A W ₁₁ K ₃ O ₃₈ fragment from the crystal structure ¹⁶ K ₆ H ₄ W ₁₁ O ₃₈ ·H ₂ O	0.602	1.001	0.000
4^{th}	1.0	A W ₂ O ₇ fragment from the crystal structure ¹⁷ of Bi ₂ W ₂ O ₉	1.885	0.998	0.338
5 th	0.9	A Re ₂ O ₈ fragment from the crystal structure Bi ₂₈ Re ₂ O ₄₉ ¹⁸	0	-	-

E: SHAP analysis

Figure S4: The average absolute SHAP value and PDF are calculated for all POM fragments in the database. Simulation parameters from section A in are used for the PDF simulation. When calculating the average PDF intensity, the intensity beyond the largest distance of the POM fragment is left out. The SHAP values for Q_{min}, Q_{max} and Q_{damp} are insignificant (Q_{min}: 0.003, Q_{max}: 0.003, Q_{damp}: 0.0006).

Figure S5: The average SHAP value over classes for the test set plotted for the r_{range} for A) nPDF data, B) ePDF data. Where The SHAP values for Q_{min} , Q_{max} and Q_{damp} are insignificant b) Q_{min} : 0.009, Q_{max} : 0.009, Q_{damp} : 0.006 and c) Q_{min} : 0.015, Q_{max} : 0.010, Q_{damp} : 0.007.

F: Performance versus the number of datasets

Table S6: The mean and standard deviation based on 5 iterations where the model has been trained on different simulated PDFs and predictions have been done on the same test set.

	2	3	5	8	98
xPDF	43.84 ± 0.09	40.32 ± 0.66	53.95 ± 0.00	71.38 ± 0.09	93.95 ± 0.16
nPDF	46.95 ±0.55	39.37 ± 0.27	54.00 ± 0.36	73.27 ± 0.31	94.27 ± 0.23

ePDF	45.10 ± 0.33	41.67 ± 0.51	50.93 ± 0.27	74.27 ± 0.00	95.98 ± 0.17
xSAXS	29.12 ± 3.32	48.67 ± 0.44	60.95 ± 0.00	70.56 ± 0.11	93.59 <u>+</u> 0.11
xPDF + xSAXS	55.12 ± 0.22	55.76 ± 0.00	75.17 ± 0.00	83.88 ± 0.18	97.02 ± 0.17
xPDF + nPDF + xSAXS	65.55 ± 0.11	65.1 ± 0.11	77.47 ± 0.09	86.68 ± 0.00	97.52 ± 0.32

G: References

1. Juhás, P.; Farrow, C. L.; Yang, X.; Knox, K. R.; Billinge, S. J. L., Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. Acta Crystallogr. A 2015, 71 (Pt 6), 562-568. 2. Bouhlel, M. A.; Hwang, J. T.; Bartoli, N.; Lafage, R.; Morlier, J.; Martins, J. R. R. A., A Python surrogate modeling framework with derivatives. Adv. Eng. Softw. 2019, 135, 102662. 3. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html. Saini, M. K.; Gupta, R.; Parbhakar, S.; Kumar Mishra, A.; Mathur, R.; Hussain, F., 4. Dimeric complexes of rare-earth substituted Keggin-type silicotungstates: syntheses, crystal structure and solid state properties. RSC Adv. 2014, 4 (48), 25357-25364. 5. Glass, E. N.; Fielden, J.; Kaledin, A. L.; Musaev, D. G.; Lian, T.; Hill, C. L., Extending Metal-to-Polyoxometalate Charge Transfer Lifetimes: The Effect of Heterometal

Location. Chem. Eur. J. 2014, 20 (15), 4297-4307.

6. Son, J. H.; Kwon, Y.-U.; Han, O. H., New Ionic Crystals of Oppositely Charged Cluster Ions and Their Characterization. *Inorg. Chem.* **2003**, *42* (13), 4153-4159.

7. Han, X.-B.; Zhang, Z.-M.; Wang, Z.-S.; Zhang, H.; Duan, H.; Wang, E.-B., A 3D purely inorganic porous framework based on Keggin polyoxoanions. *Inorg. Chem. Commun.* **2012**, *18* (Complete), 47-49.

 Uchida, S.; Kawamoto, R.; Mizuno, N., Recognition of Small Polar Molecules with an Ionic Crystal of α-Keggin-Type Polyoxometalate with a Macrocation. *Inorg. Chem.* 2006, 45 (13), 5136-5144.

 Piedra-Garza, L. F.; Reinoso, S.; Dickman, M. H.; Sanguineti, M. M.; Kortz, U., The first 3-dimensional assemblies of organotin-functionalized polyanions. *Dalton Trans.* 2009, (31), 6231-6234. 10. Xin-Bao, H.; Zhi-Ming, Z.; Zhi-Shu, W.; Huan, Z.; Hui, D.; En-Bo, W., A 3D purely inorganic porous framework based on Keggin polyoxoanions. *Inorg. Chem. Commun.* **2012**, *18*, 47-49.

11. Patrut, A.; Bögge, H.; Forizs, E.; Rusu, D.; Lowy, D. A.; Margineanu, D.; Naumescu, A., Spectroscopic and crystal structure investigation of a new bismuth (III) containing polyoxometalate cluster. *Rev. Roum. Chim* **2010**, *55* (11-12), 865-870.

12. Assran, A. S.; Izarova, N. V.; Banerjee, A.; Rabie, U. M.; Abou-El-Wafa, M. H. M.; Kortz, U., The antimony(iii)-bridged heteropolyanion sandwich dimers $[Sb^{III}_3(A-\alpha-XW_9O_{34})_2]^{11-}$ (X = Si^{IV}, Ge^{IV}) and C-shaped double-sandwich $[Sb^{III}_6O_2(PW_6O_{26})(A-\alpha-PW_9O_{34})_2]^{15-}$. *Dalton Trans.* **2012**, *41* (33), 9914-9921.

13. Hou, D.; Hagen, K. S.; Hill, C. L., Pentadecavanadate, $V_{15}O_{42}^{9-}$, a new highly condensed fully oxidized isopolyvanadate with kinetic stability in water. *J. Chem. Soc., Chem. Commun.* **1993**, (4), 426-428.

Mbomekallé, I.-M.; Bassil, B. S.; Suchopar, A.; Keita, B.; Nadjo, L.; Ammam, M.;
Haouas, M.; Taulelle, F.; Kortz, U., Improved Synthesis, Structure, and Solution Characterization of the Cyclic 48-Tungsto-8-Arsenate(V), [H₄As₈W₄₈O₁₈₄]³⁶⁻. *J. Cluster Sci.* 2014, 25 (1), 277-285.

15. Redrup, K. V.; Weller, M. T., Hydrothermal routes to new sodium hydrogen polytungstates. *Dalton Trans.* **2009**, (23), 4468-4472.

16. Lehmann, T.; Fuchs, J., Struktur und Schwingungsspektrum des
Kaliumundecawolframats Kg₆H₄W₁₁O₃₈· 11H₂O / Structure and Vibrational Spectrum of the
Potassium Undecatungstate K₆H₄WnO₃₈ -11 H₂O. *Z. Naturforsch.* 1988, 43 (1), 89-93.

17. Champarnaud-Mesjard, J.-C.; Frit, B.; Watanabe, A., Crystal structure of $Bi_2W_2O_9$, the n=2 member of the homologous series $(Bi_2O_2)B^{VI}{}_nO_{3n+1}$ of cation-deficient Aurivillius phases. *J. Mater. Chem.* **1999**, *9* (6), 1319-1322.

18. Crumpton, T. E.; Mosselmans, J. F. W.; Greaves, C., Structure and oxide ion conductivity in Bi₂₈Re₂O₄₉, a new bismuth rhenium oxide containing tetrahedral and octahedral Re(vii). *J. Mater. Chem.* **2005**, *15* (1), 164-167.