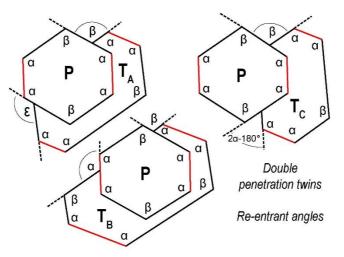


Volume 56 (2023)


Supporting information for article:

Twinning and homoepitaxy cooperating to the already rich growth morphology of CaCO3 polymorphs. I. Aragonite

Dino Aquilano, Marco Bruno, Stefano Ghignone and Linda Pastero

Figure S1. Complete scheme of the aragonite crystal (single and twinned) seen along its [001] direction. See Figure 3 of the text for a comparison. Here, single crystal along with simple and double twins are represented, before and after an imaged closure of each aggregate. The twin planes are always of the type <110>. It is plain that all the "closed" crystals are pseudo-hexagonal, but the distribution of the internal angles is markedly different. As a matter of fact, if the single crystal maintains the classic distribution $4\alpha + 2\beta = 720^{\circ}$, the single twin has $2\alpha + 3\beta + \epsilon = 720^{\circ}$, while the double twin exhibits $4\beta + 2\epsilon = 720^{\circ}$. It is worth noting that the angle α disappeared in the transition from the single crystal to the closed double twin.

Figure S2. The re-entrant angles observed when looking at the three types (A, B, C) of the double penetration twins of aragonite. Type A: $(\beta + \epsilon)$; Type B: $(\beta + \alpha)$; Type C: $[\beta + (2\alpha - 180^{\circ})]$. This Figure is complementary to Figure (3a) of the main text.