

JOURNAL OF
APPLIED
CRYSTALLOGRAPHY

Volume 56 (2023)

Supporting information for article:

Upgraded LauePt4 for rapid recognition and fitting of Laue patterns from crystals with unknown orientations

Vincent W. Huang, Yafei Liu, Balaji Raghothamachar and Michael Dudley

Crystal coordinate system

Fig. S1. Crystal coordinate system established on the unit cell of a crystal with lattice constants a,

$$
b, c, \alpha, \beta, \gamma
$$

The crystal coordinate system (CS) $x y z$ is defined in Fig. S1, where the x-axis is parallel to a, the y-axis is in the $\mathbf{a b}$ plane, and the z-axis is perpendicular to the $\mathbf{a b}$ plane. Then the three primitive lattice vectors can be expressed in the $x y z \mathrm{CS}$ as

$$
\begin{align*}
& \mathbf{a}=a_{x} \hat{\mathbf{x}}=a \hat{\mathbf{x}}, \tag{1a}\\
& \mathbf{b}=b_{x} \hat{\mathbf{x}}+b_{y} \hat{\mathbf{y}}=b \cos \gamma \hat{\mathbf{x}}+b \sin \gamma \hat{\mathbf{y}}, \tag{1b}\\
& \mathbf{c}=c_{x} \hat{\mathbf{x}}+c_{y} \hat{\mathbf{y}}+c_{z} \hat{\mathbf{y}}, \tag{1c}
\end{align*}
$$

with $c_{x}=c \cos \beta, c_{y}=c(\cos \alpha-\cos \beta \cos \gamma) / \sin \gamma$, and $c_{z}=\sqrt{c^{2}-c_{x}^{2}-c_{y}^{2}}$. Here $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ are unit vectors along the x, y, z axes of the crystal CS , respectively. Then the reciprocal lattice vectors are

$$
\begin{align*}
& \mathbf{a}^{*}=a_{x}^{*} \hat{\mathbf{x}}+a_{y}^{*} \hat{\mathbf{y}}+a_{z}^{*} \hat{\mathbf{z}}=\frac{b_{y} c_{z}}{V} \hat{\mathbf{x}}-\frac{b_{x} c_{z}}{V} \hat{\mathbf{y}}+\frac{b_{x} c_{y}-b_{y} c_{x}}{V} \hat{\mathbf{z}}, \tag{2a}\\
& \mathbf{b}^{*}=b_{y}^{*} \hat{\mathbf{y}}+b_{z}^{*} \hat{\mathbf{z}}=\frac{a_{x} c_{z}}{V} \hat{\mathbf{y}}-\frac{a_{x} c_{y}}{V} \hat{\mathbf{z}}, \tag{2b}\\
& \mathbf{c}^{*}=c_{z}^{*} \hat{\mathbf{z}}=\frac{a_{x} b_{y}}{V} \hat{\mathbf{z}}, \tag{2c}
\end{align*}
$$

where $V=a b c_{z} \sin \gamma$ is the volume of the unit cell.

Expressing the primitive reciprocal lattice vectors $\mathbf{a}^{*}, \mathbf{b}^{*}$, \mathbf{c}^{*} in the laboratory coordinate systems

As shown in Fig. 1 of the paper, when a user clicks on a spot $P\left(x_{p}, y_{p}\right)$ of the Laue image on the CCD plane, the diffracted wavevector of this spot is along the vector

$$
\begin{equation*}
\mathbf{k}_{g}=-x_{p} \hat{\mathbf{x}}^{\prime}+r_{p} \sin (\Phi+\varphi) \hat{\mathbf{y}}^{\prime}+r_{p} \cos (\Phi+\varphi) \hat{\mathbf{z}}^{\prime} \tag{3}
\end{equation*}
$$

in the laboratory coordinate system $x^{\prime} y^{\prime} z^{\prime}$, where $\hat{\mathbf{x}}^{\prime}, \hat{\mathbf{y}}^{\prime}, \hat{\mathbf{z}}^{\prime}$ are unit vectors along the $x^{\prime}, y^{\prime}, z^{\prime}$ axes, respectively. Here only the direction is valid, and we calculate the unit vector to represent the direction, $\hat{\mathbf{k}}_{g}=\mathbf{k}_{g} /\left|\mathbf{k}_{g}\right|$. The unit vector along the incidence direction is $\hat{\mathbf{k}}_{0}=-\hat{\mathbf{z}}^{\prime}$. The diffraction vector \mathbf{G} in Fig. $1(\mathrm{~b})$ of the paper is parallel to the vector $\hat{\mathbf{k}}_{g}-\hat{\mathbf{k}}_{0}$. We can obtain the unit vector

$$
\begin{equation*}
\widehat{\mathbf{G}}^{\prime}=\left(\hat{\mathbf{k}}_{g}-\hat{\mathbf{k}}_{0}\right) /\left|\hat{\mathbf{k}}_{g}-\hat{\mathbf{k}}_{0}\right|=\widehat{G}_{x}, \hat{\mathbf{x}}^{\prime}+\widehat{G}_{y \prime} \hat{\mathbf{y}}^{\prime}+\widehat{G}_{z \prime} \hat{\mathbf{z}}^{\prime} \tag{4}
\end{equation*}
$$

along the direction of \mathbf{G} in the $x^{\prime} y^{\prime} z^{\prime}$ laboratory coordinate system. Meanwhile, we need to set another two axes $\widehat{\mathbf{U}}^{\prime}$ and $\widehat{\mathbf{V}}^{\prime}$ such that $\widehat{\mathbf{U}}^{\prime}, \widehat{\mathbf{V}}^{\prime}$, and $\widehat{\mathbf{G}}^{\prime}$ form an intermediate right-handed orthogonal coordinate system (see Fig. S2). Here we choose

$$
\begin{equation*}
\widehat{\mathbf{U}}^{\prime}=\frac{\hat{\mathbf{z}}^{\prime} \times \widehat{\mathbf{G}}^{\prime}}{\left|\hat{\mathbf{z}}^{\prime} \times \widehat{\mathbf{G}}^{\prime}\right|}=\widehat{U}_{x,} \hat{\mathbf{x}}^{\prime}+\widehat{U}_{y,} \hat{\mathbf{y}}^{\prime}+\widehat{U}_{z \prime} \hat{\mathbf{z}}^{\prime} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\mathbf{V}}^{\prime}=\widehat{\mathbf{G}}^{\prime} \times \widehat{\mathbf{U}}^{\prime}=\hat{V}_{x}, \hat{\mathbf{x}}^{\prime}+\widehat{V}_{y}, \hat{\mathbf{y}}^{\prime}+\widehat{V}_{z}, \hat{\mathbf{z}}^{\prime} . \tag{5b}
\end{equation*}
$$

Note that for exact back reflection, $\widehat{\mathbf{G}}^{\prime}=\widehat{\mathbf{z}}^{\prime}$. For this special case, we define $\widehat{\mathbf{U}}^{\prime}=\widehat{\mathbf{x}}^{\prime}$ and $\widehat{\mathbf{V}}^{\prime}=\hat{\mathbf{y}}^{\prime}$.

Now in the G-rotation method, if the user assigns an index $h k l$ to \mathbf{G}, in the crystal coordinate system we have

$$
\begin{equation*}
\mathbf{G}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \tag{6}
\end{equation*}
$$

and the unit vector along \mathbf{G} is $\widehat{\mathbf{G}}=\mathbf{G} /|\mathbf{G}|$. Afterwards, LauePt4 will automatically choose a vector

$$
\begin{equation*}
\mathbf{G}_{u}=h_{u} \mathbf{a}^{*}+k_{u} \mathbf{b}^{*}+l_{u} \mathbf{c}^{*} \tag{7}
\end{equation*}
$$

perpendicular to \mathbf{G}. Note that to ensure \mathbf{G}_{u} is perpendicular to \mathbf{G}, here h_{u}, k_{u}, l_{u} may not necessarily be integers (but h, k, l are always integers). Then LauePt4 calculates a third vector $\mathbf{G}_{v}=\mathbf{G} \times \mathbf{G}_{u}$ that is perpendicular to both \mathbf{G} and \mathbf{G}_{u}. The three vectors are then normalized to three unit vectors

$$
\begin{align*}
& \widehat{\mathbf{G}}_{u}=\left(\widehat{\mathrm{G}}_{u x} \widehat{\mathrm{G}}_{u y} \widehat{\mathrm{G}}_{u z}\right), \tag{8a}\\
& \widehat{\mathbf{G}}_{v}=\left(\widehat{\mathrm{G}}_{v x} \widehat{\mathrm{G}}_{v y} \widehat{\mathrm{G}}_{v z}\right), \tag{8b}\\
& \widehat{\mathbf{G}}=\left(\widehat{\mathrm{G}}_{x} \widehat{\mathrm{G}}_{y} \widehat{\mathrm{G}}_{z}\right) \tag{8c}
\end{align*}
$$

in the crystal coordinate system. The purpose of this $\widehat{\mathbf{G}}_{u} \widehat{\mathbf{G}}_{v} \widehat{\mathbf{G}}$ system is that we want to express the three reciprocal lattice vectors $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ in this system:

$$
\begin{align*}
\mathbf{a}^{*} & =a_{u}^{*} \widehat{\mathbf{G}}_{u}+a_{v}^{*} \widehat{\mathbf{G}}_{v}+a_{G}^{*} \widehat{\mathbf{G}}, \tag{9a}\\
\mathbf{b}^{*} & =b_{u}^{*} \widehat{\mathbf{G}}_{u}+b_{v}^{*} \widehat{\mathbf{G}}_{v}+b_{G}^{*} \widehat{\mathbf{G}}, \tag{9b}\\
\mathbf{c}^{*} & =c_{u}^{*} \widehat{\mathbf{G}}_{u}+c_{v}^{*} \widehat{\mathbf{G}}_{v}+c_{G}^{*} \widehat{\mathbf{G}} \mathrm{a} \tag{9c}
\end{align*}
$$

with

$$
\begin{array}{llll}
a_{u}^{*}=\mathbf{a}^{*} \cdot \widehat{\mathbf{G}}_{u} & a_{v}^{*}=\mathbf{a}^{*} \cdot \widehat{\mathbf{G}}_{v} & a_{G}^{*}=\mathbf{a}^{*} \cdot \widehat{\mathbf{G}}, \\
b_{u}^{*}=\mathbf{b}^{*} \cdot \widehat{\mathbf{G}}_{u} & b_{v}^{*}=\mathbf{b}^{*} \cdot \widehat{\mathbf{G}}_{v} & b_{G}^{*}=\mathbf{b}^{*} \cdot \widehat{\mathbf{G}} \\
c_{u}^{*}=\mathbf{c}^{*} \cdot \widehat{\mathbf{G}}_{u} & c_{v}^{*}=\mathbf{c}^{*} \cdot \widehat{\mathbf{G}}_{v} & c_{G}^{*}=\mathbf{c}^{*} \cdot \widehat{\mathbf{G}} \tag{10c}
\end{array}
$$

All the coefficients in Eqs. (10a, 10b, 10c) can be calculated using Eqs. (2a, 2b, 2c, 8a, 8b, 8c) in the crystal coordinate system.

Fig. S2. The intermediate coordinate system shown in the $x^{\prime} y^{\prime} z^{\prime}$ laboratory coordinate system.
$\widehat{\mathbf{U}}^{\prime} \widehat{\mathbf{V}}^{\prime} \widehat{\mathbf{G}}^{\prime}$ are orthogonal unit vectors form the right-handed intermediate coordinate system. $\widehat{\mathbf{G}}_{u} \widehat{\mathbf{G}}_{v}$ $\widehat{\mathbf{G}}^{\prime}$ also form a right-handed orthogonal coordinate system, but the $\widehat{\mathbf{G}}_{u} \widehat{\mathbf{G}}_{v} \widehat{\mathbf{G}}^{\prime}$ system is rotated from $\widehat{\mathbf{U}}^{\prime} \widehat{\mathbf{V}}^{\prime} \widehat{\mathbf{G}}^{\prime}$ around $\widehat{\mathbf{G}}^{\prime}$ by an angle Ω.

Next we move to the laboratory coordinate system. In this system, $\widehat{\mathbf{G}}$ is aligned to be the same as $\widehat{\mathbf{G}}^{\prime}$ in Eq. (4). $\widehat{\mathbf{G}}_{u}$ and $\widehat{\mathbf{G}}_{v}$ are both set to be in the plane defined by $\widehat{\mathbf{U}}^{\prime}$ and $\widehat{\mathbf{V}}^{\prime}$, but are rotated around $\widehat{\mathbf{G}}$ by an angle Ω, see Fig. S2. Here the $\widehat{\mathbf{G}}$ vector is fixed in space. This corresponds to rotation of the crystal along the $\widehat{\mathbf{G}}$ vector. Then $\widehat{\mathbf{G}}_{u} \widehat{\mathbf{G}}_{v} \widehat{\mathbf{G}}$ can be expressed as

$$
\begin{align*}
& \widehat{\mathbf{G}}_{u}=\cos \Omega \widehat{\mathbf{U}}^{\prime}+\sin \Omega \widehat{\mathbf{V}}^{\prime} . \tag{11a}\\
& \widehat{\mathbf{G}}_{v}=-\sin \Omega \widehat{\mathbf{U}}^{\prime}+\cos \Omega \widehat{\mathbf{V}}^{\prime} . \tag{11b}
\end{align*}
$$

$$
\begin{equation*}
\widehat{\mathbf{G}}=\widehat{\mathbf{G}}^{\prime} \tag{11c}
\end{equation*}
$$

Now if we replace $\widehat{\mathbf{G}}_{u} \widehat{\mathbf{G}}_{v} \widehat{\mathbf{G}}$ in Eqs. (11a, 11b, 11c) with those in Eq. $(4,5 \mathrm{a}, 5 \mathrm{~b})$ and then insert Eqs. (11a, $11 \mathrm{~b}, 11 \mathrm{c}$) into Eqs. ($9 \mathrm{a}, 9 \mathrm{~b}, 9 \mathrm{c}$), we obtain the expressions of $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ in the laboratory coordinate system as

$$
\begin{align*}
& \mathbf{a}^{*}=a_{x^{\prime}}^{*} \hat{\mathbf{x}}^{\prime}+a_{y^{\prime}}^{*} \hat{\mathbf{y}}^{\prime}+a_{z^{\prime}}^{*} \hat{\mathbf{z}}^{\prime} \mathrm{a} \tag{12a}\\
& \mathbf{b}^{*}=b_{x^{\prime}}^{*} \hat{\mathbf{x}}^{\prime}+b_{y^{\prime}}^{*} \hat{\mathbf{y}}^{\prime}+b_{z^{\prime}}^{*} \hat{\mathbf{z}}^{\prime} \tag{12b}\\
& \mathbf{c}^{*}=c_{x}^{*} \hat{\mathbf{x}}^{\prime}+c_{y,}^{*} \hat{\mathbf{y}}^{\prime}+c_{z \prime}^{*} \hat{\mathbf{z}}^{\prime} \tag{12c}
\end{align*}
$$

The nine coefficients, $a_{x^{\prime}}^{*} \quad a_{y^{\prime}}^{*} \quad a_{z^{\prime}}^{*} \quad b_{x^{\prime}}^{*} \quad b_{y^{\prime}}^{*} \quad b_{z^{\prime}}^{*} \quad c_{x^{\prime}}^{*} \quad c_{y^{\prime}}^{*} \quad c_{z^{\prime}}^{*}$ are all the geometrical parameters LauePt 4 requires for calculating any diffraction vectors in the laboratory coordinate system during simulation. Based on the six lattice parameters, these coefficients only depend on the hkl indices in Eq. (6) and the rotation angle Ω in Eqs. (11a) and (11b). The nine coefficients also depend on the automatically chosen indices h_{u}, k_{u}, l_{u} in Eq. (7), but h_{u}, k_{u}, l_{u} only determine the starting orientation $\Omega=0$ of the crystal rotation. Rotation of Ω from 0 to 360° covers all the possible $\widehat{\mathbf{G}}_{u}$ vectors perpendicular to the fixed G no matter what LauePt4 automatically chooses for h_{u}, k_{u}, l_{u}.

In the LUT-P method, after the user selects two diffraction spots in the Laue image, LauePt4 calculates the unit vectors $\widehat{\mathbf{H}}_{1}^{\prime}$ and $\widehat{\mathbf{H}}_{2}^{\prime}$ along the two corresponding diffraction vectors using Eqs. (3) and (4) in the laboratory coordinate system. After the user selects a reflection pair ($h_{1} k_{1} l_{1}, h_{2} k_{2} l_{2}$) from the matching list, the two diffraction vectors in the crystal coordinate system are also determined:

$$
\begin{align*}
& \mathbf{H}_{1}=h_{1} \mathbf{a}^{*}+k_{1} \mathbf{b}^{*}+l_{1} \mathbf{c}^{*} \tag{13a}\\
& \mathbf{H}_{2}=h_{2} \mathbf{a}^{*}+k_{2} \mathbf{b}^{*}+l_{2} \mathbf{c}^{*} \tag{13b}
\end{align*}
$$

LauePt 4 then makes these five changes: (i) Replace $\widehat{\mathbf{G}}^{\prime}$ in Eq. (4) with the current $\widehat{\mathbf{H}}_{1}^{\prime}$. (ii) Replace $\widehat{\mathbf{U}}^{\prime}$ in Eq. (5a) with

$$
\begin{equation*}
\widehat{\mathbf{U}}^{\prime}=\frac{\widehat{\mathbf{H}}_{\prime}^{\prime} \times \widehat{\mathbf{H}}_{2}^{\prime}}{\left|\widehat{\mathbf{H}}_{1}^{\prime} \times \widehat{\mathbf{H}}_{2}^{\prime}\right|}=\widehat{U}_{x}, \hat{\mathbf{x}}^{\prime}+\widehat{U}_{y,} \hat{\mathbf{y}}^{\prime}+\widehat{U}_{z}, \hat{\mathbf{z}}^{\prime} \tag{14}
\end{equation*}
$$

(iii) Replace \mathbf{G} in Eq. (6) with \mathbf{H}_{1} in Eq. (13a). (iv) Replace \mathbf{G}_{u} in Eq. (7) with the vector $\mathbf{H}_{1} \times \mathbf{H}_{2}$ calculated by using Eqs. (13a) and (13b), and (v) set $\Omega=0$ in Eqs. (11a) and (11b) (because no crystal rotation is allowed in the two-spot LUT-P method). After these changes, LauePt4 repeats all the above calculations for $a_{x^{\prime}}^{*} \quad a_{y^{\prime}}^{*} \quad a_{z^{\prime}}^{*} \quad b_{x^{\prime}}^{*} \quad b_{y^{\prime}}^{*} \quad b_{z^{\prime}}^{*} \quad c_{x^{\prime}}^{*} \quad c_{y^{\prime}}^{*} \quad c_{z^{\prime}}^{*}$ and then simulates the specific Laue pattern.

Overall, when the user clicks to select a spot on the screen (in the Laue image), the direction of corresponding diffraction vector \mathbf{G} is determined in the laboratory coordinate system. When the reflection is assigned a reflection index, the expression of \mathbf{G} in the crystal coordinate system is determined. But the
two expressions refer to the same vector in space. This identity bridges the crystal coordinate system and the laboratory coordinate system. But full bridging requires two directions. In the LUT-P method, the \mathbf{G} vector is \mathbf{G}_{1}, and the second direction is the vector $\mathbf{G}_{1} \times \mathbf{G}_{2}$ that is always perpendicular to \mathbf{G}_{1}. In the \mathbf{G} rotation method, the second direction in the laboratory coordinate system is $\hat{\mathbf{z}}^{\prime} \times \widehat{\mathbf{G}}^{\prime}$, and in the crystal coordinate system, LauePt4 automatically selects a direction ($h_{u} k_{u} l_{u}$) but leaves the freedom to rotate this direction around \mathbf{G} by 360°.

