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Crystal coordinate system 

 

 
Fig. S1. Crystal coordinate system established on the unit cell of a crystal with lattice constants , 

, , , , . 
 

The crystal coordinate system (CS) xyz is defined in Fig. S1, where the x-axis is parallel to a, the y-axis is 

in the ab plane, and the z-axis is perpendicular to the ab plane. Then the three primitive lattice vectors can 

be expressed in the xyz CS as = = ,        (1a) = + = cos + sin ,    (1b) = + + ,      (1c) 

with = cos ,  = (cos − cos cos ) sin⁄ , and = − − . Here , ,  are unit 

vectors along the x, y, z axes of the crystal CS, respectively. Then the reciprocal lattice vectors are ∗ = ∗ + ∗ + ∗ = − + ,   (2a) ∗ = ∗ + ∗ = − ,     (2b) ∗ = ∗ = ,       (2c) 

where = sin  is the volume of the unit cell. 
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Expressing the primitive reciprocal lattice vectors a*, b*, c*  
in the laboratory coordinate systems 

 

As shown in Fig. 1 of the paper, when a user clicks on a spot P ( , ) of the Laue image on the CCD 

plane, the diffracted wavevector of this spot is along the vector = − + sin(Φ + ) + cos(Φ + )        (3) 

in the laboratory coordinate system ′ ′ ′ , where , ,  are unit vectors along the ′, ′ , ′ axes, 

respectively. Here only the direction is valid, and we calculate the unit vector to represent the direction, = | |⁄ . The unit vector along the incidence direction is = − . The diffraction vector G in Fig. 

1(b) of the paper is parallel to the vector − . We can obtain the unit vector = − − = + +    (4) 

along the direction of G in the ′ ′ ′ laboratory coordinate system. Meanwhile, we need to set another two 

axes  and  such that , , and  form an intermediate right-handed orthogonal coordinate system 

(see Fig. S2). Here we choose = ×× = + +      (5a) 

and = × = + + .    (5b) 

Note that for exact back reflection, = . For this special case, we define =  and = . 

 

Now in the G-rotation method, if the user assigns an index hkl to G, in the crystal coordinate system we 

have = ℎ ∗ + ∗ + ∗      (6) 

and the unit vector along G is = | |⁄ . Afterwards, LauePt4 will automatically choose a vector = ℎ ∗ + ∗ + ∗    (7) 

perpendicular to G. Note that to ensure  is perpendicular to G, here ℎ , ,  may not necessarily be 

integers (but ℎ,  ,   are always integers). Then LauePt4 calculates a third vector = ×  that is 

perpendicular to both G and . The three vectors are then normalized to three unit vectors = (G   G   G ),      (8a) = (G   G   G ),       (8b) = (G   G   G )       (8c) 
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in the crystal coordinate system. The purpose of this  system is that we want to express the three 

reciprocal lattice vectors ∗, ∗, ∗ in this system: ∗ = ∗ + ∗ + ∗ ,      (9a) ∗ = ∗ + ∗ + ∗ ,     (9b) ∗ = ∗ + ∗ + ∗ a     (9c) 

with ∗ = ∗ ∙         ∗ = ∗ ∙         ∗ = ∗ ∙ ,     (10a) ∗ = ∗ ∙         ∗ = ∗ ∙         ∗ = ∗ ∙     (10b) ∗ = ∗ ∙         ∗ = ∗ ∙         ∗ = ∗ ∙      (10c) 

All the coefficients in Eqs. (10a, 10b, 10c) can be calculated using Eqs. (2a, 2b, 2c, 8a, 8b, 8c) in the crystal 

coordinate system. 

 
Fig. S2. The intermediate coordinate system shown in the ′ ′ ′ laboratory coordinate system.     are orthogonal unit vectors form the right-handed intermediate coordinate system.   

 also form a right-handed orthogonal coordinate system, but the    system is rotated from     around  by an angle . 
 

Next we move to the laboratory coordinate system. In this system,  is aligned to be the same as  in Eq. 

(4).  and  are both set to be in the plane defined by  and , but are rotated around  by an angle Ω, 

see Fig. S2. Here the  vector is fixed in space. This corresponds to rotation of the crystal along the  

vector. Then      can be expressed as = cos Ω + sin Ω .     (11a) = − sin Ω + cos Ω .     (11b) 
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=          (11c) 

Now if we replace       in Eqs. (11a, 11b, 11c) with those in Eq. (4, 5a, 5b) and then insert Eqs. (11a, 

11b, 11c) into Eqs. (9a, 9b, 9c), we obtain the expressions of ∗, ∗, ∗ in the laboratory coordinate system 

as 

  ∗ = ∗ + ∗ + ∗ a     (12a) 

  ∗ = ∗ + ∗ + ∗      (12b) 

  ∗ = ∗ + ∗ + ∗      (12c) 

The nine coefficients, ∗    ∗    ∗    ∗    ∗    ∗    ∗    ∗    ∗  are all the geometrical parameters 

LauePt4 requires for calculating any diffraction vectors in the laboratory coordinate system during 

simulation. Based on the six lattice parameters, these coefficients only depend on the hkl indices in Eq. (6) 

and the rotation angle Ω in Eqs. (11a) and (11b). The nine coefficients also depend on the automatically 

chosen indices ℎ , ,  in Eq. (7), but ℎ , ,  only determine the starting orientation Ω = 0 of the 

crystal rotation. Rotation of Ω from 0 to 360 covers all the possible  vectors perpendicular to the fixed 

G no matter what LauePt4 automatically chooses for ℎ , , . 
 

In the LUT-P method, after the user selects two diffraction spots in the Laue image, LauePt4 calculates the 

unit vectors  and  along the two corresponding diffraction vectors using Eqs. (3) and (4) in the 

laboratory coordinate system. After the user selects a reflection pair (ℎ   , ℎ   ) from the matching 

list, the two diffraction vectors in the crystal coordinate system are also determined:  = ℎ ∗ + ∗ + ∗    (13a) = ℎ ∗ + ∗ + ∗    (13b) 

LauePt4 then makes these five changes: (i) Replace  in Eq. (4) with the current . (ii) Replace  in Eq. 

(5a) with = ×× = + +     (14) 

(iii) Replace G in Eq. (6) with H1 in Eq. (13a). (iv) Replace Gu in Eq. (7) with the vector ×  calculated 

by using Eqs. (13a) and (13b), and (v) set Ω = 0 in Eqs. (11a) and (11b) (because no crystal rotation is 

allowed in the two-spot LUT-P method). After these changes, LauePt4 repeats all the above calculations 

for ∗    ∗    ∗    ∗    ∗    ∗    ∗    ∗    ∗  and then simulates the specific Laue pattern. 

 

Overall, when the user clicks to select a spot on the screen (in the Laue image), the direction of 

corresponding diffraction vector G is determined in the laboratory coordinate system. When the reflection 

is assigned a reflection index, the expression of G in the crystal coordinate system is determined. But the 
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two expressions refer to the same vector in space. This identity bridges the crystal coordinate system and 

the laboratory coordinate system. But full bridging requires two directions. In the LUT-P method, the G 

vector is , and the second direction is the vector ×  that is always perpendicular to . In the G-

rotation method, the second direction in the laboratory coordinate system is × ′, and in the crystal 

coordinate system, LauePt4 automatically selects a direction (ℎ   ) but leaves the freedom to rotate 

this direction around G by 360. 


