

Volume 56 (2023)

Supporting information for article:

Remote and Automated High Throughput Powder Diffraction Measurements Enabled by a Robotic Sample Changer at SSRL Beamline 2-1

Kevin H. Stone, Monty Cosby, Nicholas A. Strange, Vivek Thampy, Richard C. Walroth and Charles Troxel Jr

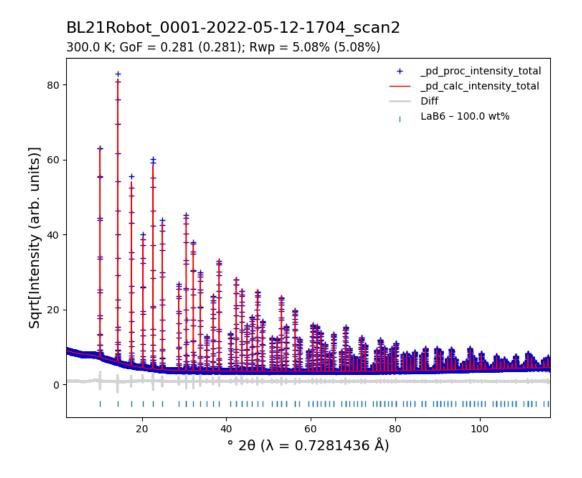
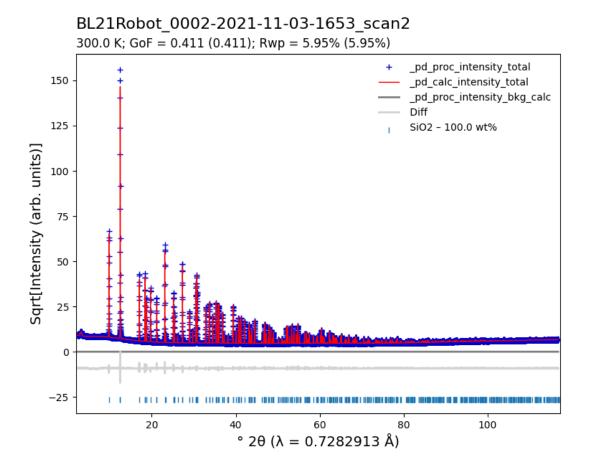
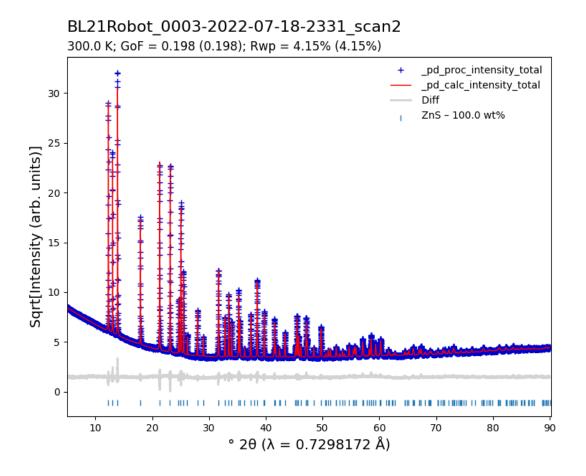
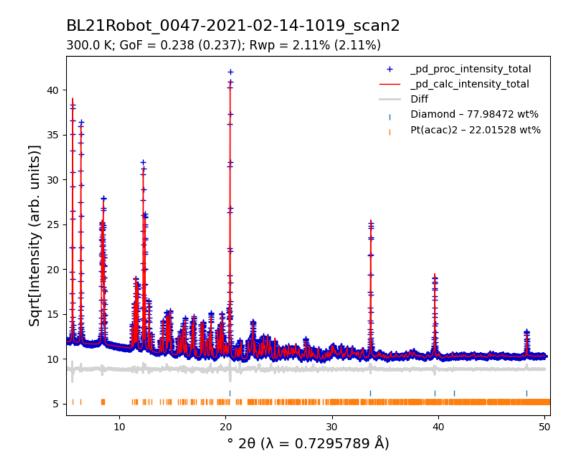

Table S1

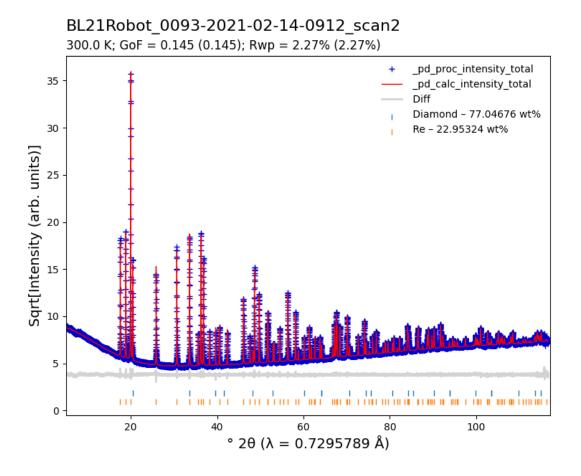
Table S2 List of example data sets measured using the automated data collection strategy and the robotic sample changer:

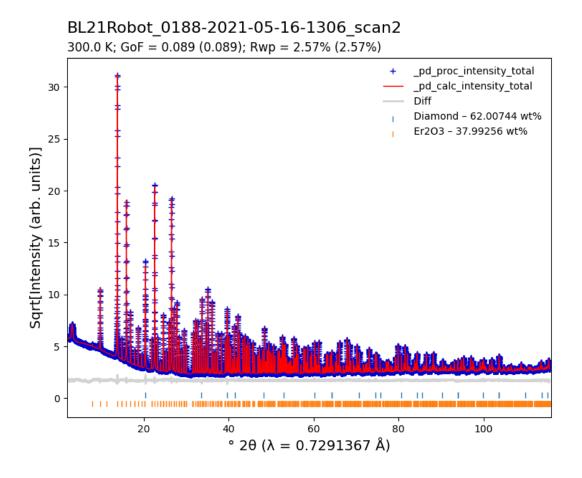

Sample	Sample	Sample Notes	Refinement	Refinement Notes
ID	Composition		Included	
0001	LaB ₆	NIST SRM 660c, lanthanum	TA, GSASII	Includes instrument parameter
		hexaboride		file for GSAS-II created from
				Pawley refinement.
0002	SiO ₂	NIST SRM 1878b, alpha-	TA	Includes Pawley fit in TOPAS
		quartz (respirable)		Academic.
0003	ZnS	Zinc Sulfide phosphor	TA	Includes individual peak fit,
		material		indexing, and Pawley fit in
				TOPAS-Academic.
0047	$Pt(O_2C_5H_7)_2$	Platinum(II)	TA	Includes individual peak fit,
		bis(acetylacetonate) diluted		indexing, and Pawley fit in
		with diamond powder		TOPAS-Academic.
0093	Re	Rhenium metal diluted with	TA	Includes individual peak fit,
		diamond powder		indexing, and Pawley fit in
				TOPAS-Academic.
				Cylindrical absorption
				correction included to keep
				thermal parameters physical.
0188	Er ₂ O ₃	Erbium (III) Oxide mixed	TA	
		with diamond powder to		
		dilute		
0911	Li ₂ CO ₃	Lithium Carbonate - Sigma	TA	Includes individual peak fit,
		Aldrich item 255823-100G		indexing, and Pawley fit in
				TOPAS-Academic.
0912	MnO	Manganese(II) Oxide 60	TA	Includes individual peak fit,
		mesh - Sigma Aldrich item		indexing, and Pawley fit in
		377201-500G		TOPAS-Academic. Correct
				indexing is 14 th best solution
				found. Cylindrical absorption
				correction included to keep
				thermal parameters physical.

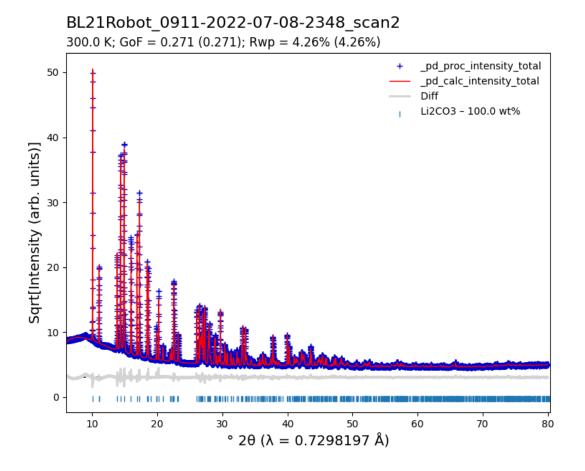
0913	Mn ₂ O ₃	Manganese (III) Oxide -	ТА	Rietveld refinement suggests
		Sigma Aldrich item 463701-		minor impurities of Mn ₃ O ₄ and
		25G		β-MnO ₂ .
0916	Fe ₂ O ₃	Iron(III) Oxide - Sigma	ТА	Rietveld refinement suggests
		Aldrich item 529311-5G		minor impurity of FeO(OH).
0919	Sb_2O_3	Antimony (III) Oxide -	ТА	Includes individual peak fit,
		Sigma Aldrich item 379255-		indexing, and Pawley fit in
		50G		TOPAS-Academic.
0927	TiO ₂	TiO ₂ less than 100nm	ТА	Would likely benefit from a
		particle size, mixture of		more advanced size and strain
		Anatase and Rutile - Sigma		model for peak broadening.
		Aldrich		
0933	Cr_2O_3	Chromium (III) Oxide -	TA	
		Sigma Aldrich item 393703-		
		100G, sample is hygroscopic		
		and bottle was freshly		
		opened just prior to loading		
		the sample into the capillary		
		and measuring on July 10,		
		2022		

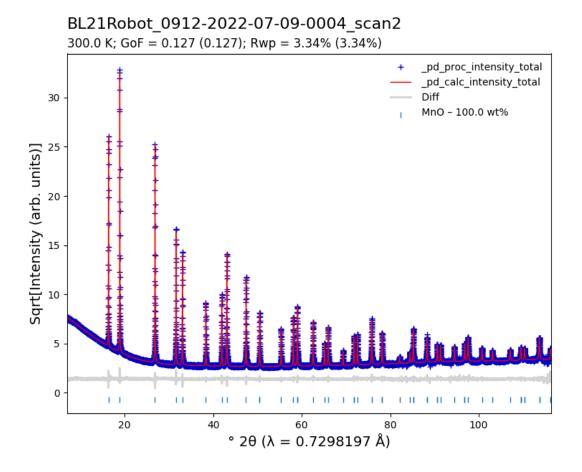

Rietveld refinements were done in TOPAS-Academic v6 (unless otherwise noted) and output generated using the pdCIF macros developed by Matthew Rowles¹⁹. Refinement data are plotted using the pdCIFplotter program²⁰. The included refinements are not meant to be considered as final, these have been refined to basic structural models to give an overall impression of the data quality. Further improvements to the Rietveld refinement models are very possible. Similarly, the CIF output is not intended to be comprehensive, but of sufficient detail to enable easy plotting of the refinement result and the resulting structures. Plots of the Rietveld refinements performed in TOPAS-Academic are shown in Figures S1-S13.

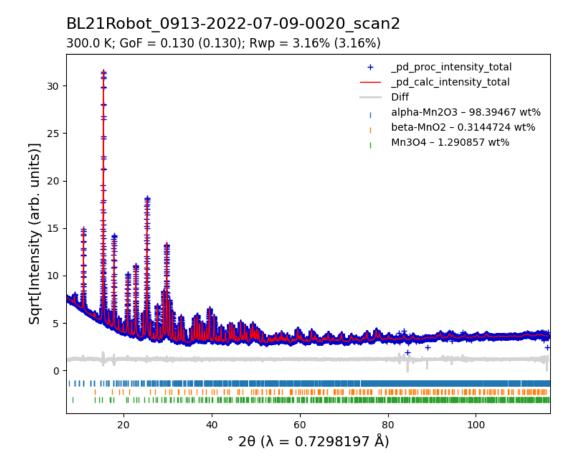

Figure S1 Rietveld refined data for sample BL21Robot_0001, lanthanum hexaboride powder. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

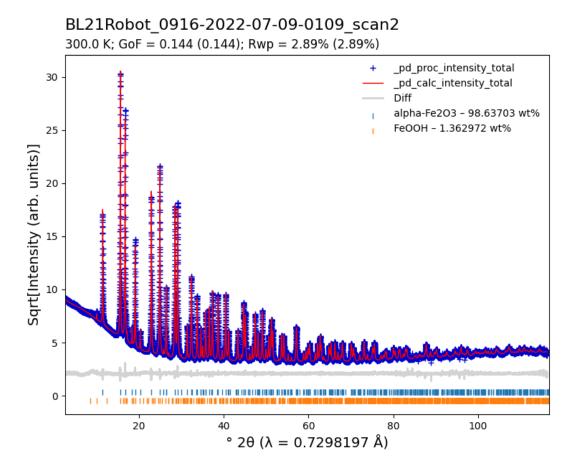

Figure S2 Rietveld refined data for sample BL21Robot_0002, α -quartz. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

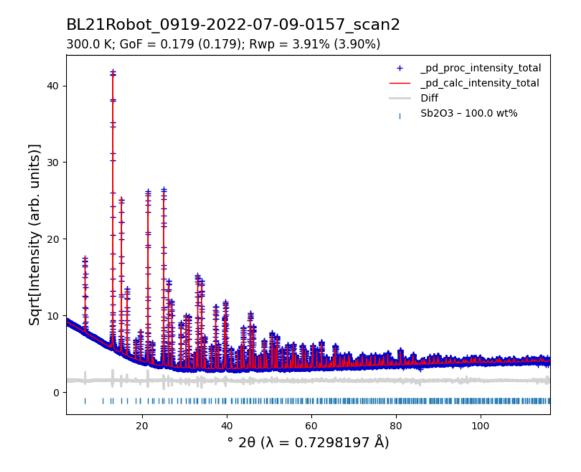

Figure S3 Rietveld refined data for sample BL21Robot_0003, zinc sulfide phosphor powder. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

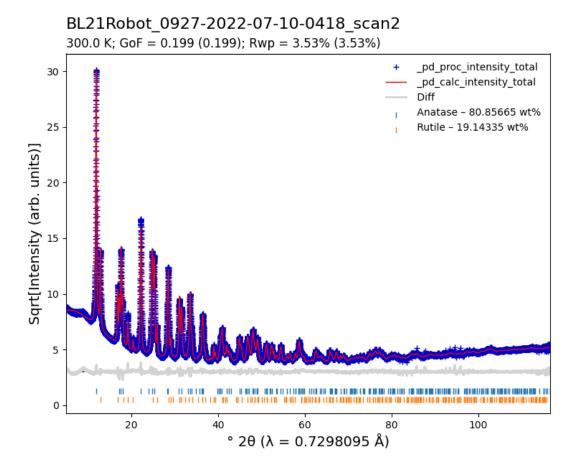

Figure S4 Rietveld refined data for sample BL21Robot_0047, platinum (II) bis(acetylacetonate) diluted with diamond powder. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.


Figure S5 Rietveld refined data for sample BL21Robot_0093, rhenium metal diluted with diamond powder. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.


Figure S6 Rietveld refined data for sample BL21Robot_0188, erbium (III) oxide diluted with diamond powder. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.


Figure S7 Rietveld refined data for sample BL21Robot_0911, lithium carbonate powder. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.


Figure S8 Rietveld refined data for sample BL21Robot_0912, manganese (II) oxide. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.


Figure S9 Rietveld refined data for sample BL21Robot_0913, manganese (III) oxide with minor impurities of β -MnO₂ and Mn₃O₄. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

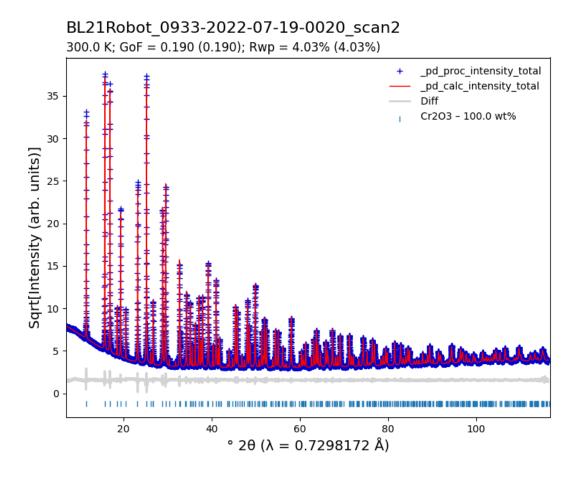

Figure S10 Rietveld refined data for sample BL21Robot_0916, iron (III) oxide with minor impurity of iron oxide-hydroxide. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

Figure S11 Rietveld refined data for sample BL21Robot_0919, antimony (III) oxide. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

Figure S12 Rietveld refined data for sample BL21Robot_0927, titanium dioxide in both rutile and anatase phases. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.

Figure S13 Rietveld refined data for sample BL21Robot_0933, chromium (III) oxide. Measured data are shown as blue crosses, calculated pattern in red with the difference shown below in grey. Tick marks indicate allowed peak positions.