

Volume 56 (2023)

Supporting information for article:

The dependence of X-ray elastic constants with respect to the penetration depth

Charles Mareau

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} \left[0 \right]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-1.70	-1.93	0.46	7.53	8.23	0.46
$\{200\}$	-4.85	-3.76	0.38	16.84	13.71	0.38
$\{220\}$	-2.55	-2.39	0.06	9.85	9.60	0.06
$\{311\}$	-3.34	-2.90	0.33	12.42	11.13	0.33
$\{222\}$	-1.70	-1.93	0.46	7.56	8.23	0.46
$\{400\}$	-4.85	-3.76	0.38	16.84	13.71	0.38
$\{331\}$	-2.26	-2.26	_	9.20	9.20	_
$\{420\}$	-3.31	-2.89	0.33	12.33	11.09	0.33
$\{422\}$	-2.55	-2.39	0.06	9.85	9.60	0.06
$\{333\}$	-1.70	-1.93	0.46	7.56	8.23	0.46
$\{511\}$	-4.16	-3.38	0.37	14.85	12.56	0.37

Table 1: Surface and bulk X-ray elastic constants for copper (A = 0.72 and a = 0.5431 nm). Single crystal elastic constants were taken from Epstein & Clarkson (1965).

Table 2: Surface and bulk X-ray elastic constants for aluminium (A = 0.02 and a = 0.40498 nm). Single crystal elastic constants were taken from Thomas (1968).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty\right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-4.55	-4.67	0.48	18.03	18.40	0.48
$\{200\}$	-5.48	-5.27	0.45	20.83	20.20	0.45
$\{220\}$	-4.77	-4.82	0.48	18.86	18.86	_
$\{311\}$	-4.99	-4.99	_	19.36	19.36	_
{222}	-4.55	-4.67	0.48	18.03	18.40	0.48
$\{400\}$	-5.48	-5.27	0.45	20.83	20.20	0.45
$\{331\}$	-4.71	-4.78	0.48	18.51	18.73	0.47
{420}	-4.98	-4.98	_	19.34	19.34	_
{422}	-4.77	-4.82	0.48	18.86	18.86	_
{333}	-4.55	-4.67	0.48	18.03	18.40	0.48
$\{511\}$	-5.28	-5.14	0.45	20.22	19.83	0.46

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-0.89	-1.02	0.39	4.45	4.84	0.39
$\{200\}$	-2.36	-1.91	0.44	8.87	7.52	0.44
$\{220\}$	-1.24	-1.24	_	5.51	5.51	_
$\{311\}$	-1.65	-1.49	0.53	6.75	6.26	0.53
$\{222\}$	-0.89	-1.02	0.39	4.47	4.84	0.39
$\{400\}$	-2.36	-1.91	0.44	8.87	7.52	0.44
$\{331\}$	-1.13	-1.18	0.17	5.23	5.32	0.16
$\{420\}$	-1.63	-1.48	0.53	6.71	6.24	0.53
$\{422\}$	-1.24	-1.24	_	5.51	5.51	_
$\{333\}$	-0.89	-1.02	0.39	4.47	4.84	0.39
$\{511\}$	-2.03	-1.72	0.47	7.91	6.96	0.47

Table 3: Surface and bulk X-ray elastic constants for nickel (A = 0.50 and a = 0.35251 nm). Single crystal elastic constants were taken from Epstein & Clarkson (1965).

Table 4: Surface and bulk X-ray elastic constants for Fe-18Cr-14Ni alloy (A = 0.75 and a = 0.3593 nm). Single crystal elastic constants were taken from Teklu (2004).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-0.80	-0.95	0.36	4.64	5.09	0.36
$\{200\}$	-2.92	-2.18	0.40	10.98	8.77	0.40
$\{220\}$	-1.33	-1.26	0.53	6.23	6.00	0.52
$\{311\}$	-1.92	-1.60	0.44	7.98	7.03	0.43
$\{222\}$	-0.80	-0.95	0.36	4.65	5.09	0.36
{400}	-2.92	-2.18	0.40	10.98	8.77	0.40
${331}$	-1.18	-1.17	1.35	5.74	5.74	_
$\{420\}$	-1.90	-1.59	0.44	7.92	7.00	0.44
$\{422\}$	-1.33	-1.26	0.53	6.23	6.00	0.52
$\{333\}$	-0.80	-0.95	0.36	4.65	5.09	0.36
$\{511\}$	-2.41	-1.92	0.51	9.63	7.99	0.51

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{110}	-1.33	-1.31	0.43	5.92	5.92	_
$\{200\}$	-2.54	-2.04	0.37	9.53	8.11	0.37
$\{211\}$	-1.33	-1.31	0.43	5.92	5.92	_
$\{220\}$	-1.33	-1.31	0.43	5.92	5.92	_
$\{222\}$	-0.94	-1.07	0.38	4.83	5.18	0.38
$\{310\}$	-2.10	-1.78	0.38	8.26	7.32	0.38
$\{222\}$	-0.94	-1.07	0.38	4.83	5.18	0.38
$\{321\}$	-1.33	-1.31	0.43	5.92	5.92	_
$\{400\}$	-2.54	-2.04	0.37	9.53	8.11	0.37
$\{330\}$	-1.33	-1.31	0.43	5.92	5.92	_
$\{420\}$	-1.76	-1.58	0.38	7.27	6.71	0.38

Table 5: Surface and bulk X-ray elastic constants for α -iron (A = 0.51 and a = 0.28665 nm). Single crystal elastic constants were taken from Leese & Lord Jr. (1968).

Table 6: Surface and bulk X-ray elastic constants for α -tantalum (A = 0.11 and a = 0.33204 nm). Single crystal elastic constants were taken from Soga (1966)

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl} \left[\infty \right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{110}	-1.75	-1.75	_	7.00	7.00	_
$\{200\}$	-2.32	-2.12	0.43	8.70	8.12	0.43
$\{211\}$	-1.75	-1.75	_	7.00	7.00	_
$\{220\}$	-1.75	-1.75	_	7.00	7.00	_
$\{222\}$	-1.54	-1.62	0.40	6.37	6.62	0.40
$\{310\}$	-2.10	-1.99	0.45	8.07	7.71	0.44
$\{222\}$	-1.54	-1.62	0.40	6.37	6.62	0.40
$\{321\}$	-1.75	-1.75	_	7.00	7.00	_
$\{400\}$	-2.32	-2.12	0.43	8.70	8.12	0.43
$\{330\}$	-1.75	-1.75	_	7.00	7.00	_
$\{420\}$	-1.94	-1.88	0.46	7.58	7.40	0.46

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{110}	-0.80	-0.77	0.44	4.59	4.50	0.44
$\{200\}$	-0.52	-0.58	0.38	3.76	3.93	0.38
$\{211\}$	-0.80	-0.77	0.44	4.59	4.50	0.44
$\{220\}$	-0.80	-0.77	0.44	4.59	4.50	0.44
$\{222\}$	-0.89	-0.84	0.40	4.87	4.70	0.40
$\{310\}$	-0.62	-0.65	0.34	4.06	4.13	0.35
$\{222\}$	-0.89	-0.84	0.40	4.87	4.70	0.40
$\{321\}$	-0.80	-0.77	0.44	4.59	4.50	0.44
$\{400\}$	-0.52	-0.58	0.38	3.76	3.93	0.38
$\{330\}$	-0.80	-0.77	0.44	4.59	4.50	0.44
$\{420\}$	-0.70	-0.70	_	4.30	4.30	_

Table 7: Surface and bulk X-ray elastic constants for chromium (A = 0.07 and a = 0.28839 nm). Single crystal elastic constants were taken from Sumer & Smith (1963).

Table 8: Surface and bulk X-ray elastic constants for the Ti-27Nb-7Al alloy (A = 0.77 and a = 0.3290 nm). Single crystal elastic constants were taken from Wang *et al.* (2019).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} \left[0 \right]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty\right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{110}	-5.19	-4.85	0.09	18.18	17.16	0.09
$\{200\}$	-9.35	-7.26	0.34	30.26	24.40	0.34
$\{211\}$	-5.19	-4.85	0.09	17.74	17.16	0.09
$\{220\}$	-5.19	-4.85	0.09	17.74	17.16	0.09
$\{222\}$	-3.64	-4.03	0.48	13.52	14.70	0.48
$\{310\}$	-7.84	-6.40	0.31	25.73	21.82	0.31
$\{222\}$	-3.64	-4.03	0.48	13.52	14.70	0.48
$\{321\}$	-5.19	-4.85	0.09	17.74	17.16	0.09
$\{400\}$	-9.35	-7.26	0.34	30.26	24.40	0.34
$\{330\}$	-5.19	-4.85	0.09	17.74	17.16	0.09
$\{420\}$	-6.67	-5.73	0.26	22.24	19.79	0.26

Table 9: Surface and bulk X-ray elastic constants for α -titanium (A = 0.08, a = 0.29508 nm and c = 0.46855 nm). Single crystal elastic constants were taken from Fisher & Renken (1964).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{100}	-3.11	-2.96	0.35	12.33	11.98	0.29
$\{110\}$	-3.11	-2.96	0.35	12.26	11.98	0.29
$\{002\}$	-2.04	-2.33	0.43	9.52	10.14	0.45
$\{101\}$	-2.95	-2.89	0.39	11.91	11.76	0.38
$\{102\}$	-2.67	-2.72	0.62	11.28	11.28	_
$\{110\}$	-3.11	-2.96	0.35	12.26	11.98	0.29
$\{103\}$	-2.46	-2.58	0.55	10.63	10.88	0.62
$\{200\}$	-3.11	-2.96	0.35	12.26	11.98	0.29
$\{112\}$	-2.91	-2.86	0.38	11.81	11.70	0.37
$\{201\}$	-3.07	-2.95	0.37	12.17	11.93	0.32
$\{004\}$	-2.04	-2.33	0.43	9.52	10.14	0.45
$\{202\}$	-2.95	-2.89	0.39	11.91	11.76	0.38
$\{104\}$	-2.33	-2.50	0.51	10.28	10.63	0.56
$\{203\}$	-2.80	-2.80	_	11.53	11.53	_
$\{120\}$	-3.11	-2.96	0.35	12.26	11.98	0.29
$\{211\}$	-3.09	-2.95	0.36	12.21	11.95	0.32
$\{114\}$	-2.59	-2.67	0.58	11.00	11.13	0.66
$\{105\}$	-2.24	-2.45	0.49	10.06	10.49	0.53
$\{122\}$	-3.01	-2.92	0.39	12.05	11.86	0.35

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$\hat{k}_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty \right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{100}	-6.49	-6.49	_	28.76	28.76	_
$\{110\}$	-6.49	-6.49	_	28.76	28.76	_
$\{002\}$	-5.36	-5.77	0.43	25.82	26.88	0.44
$\{101\}$	-6.83	-6.73	0.35	29.54	29.54	_
$\{102\}$	-6.69	-6.69	_	29.49	29.49	_
$\{110\}$	-6.49	-6.49	_	28.76	28.76	_
$\{103\}$	-6.37	-6.45	0.54	28.81	28.81	_
$\{200\}$	-6.49	-6.49	_	28.76	28.76	_
$\{112\}$	-6.87	-6.75	0.36	29.94	29.62	0.36
$\{201\}$	-6.58	-6.58	_	29.06	29.06	_
$\{004\}$	-5.36	-5.77	0.43	25.82	26.88	0.44
$\{202\}$	-6.83	-6.73	0.35	29.54	29.54	_
$\{104\}$	-6.07	-6.25	0.47	27.84	28.25	0.52
$\{203\}$	-6.87	-6.76	0.36	30.00	29.68	0.36
$\{120\}$	-6.49	-6.49	_	28.76	28.76	_
$\{211\}$	-6.55	-6.55	_	28.95	28.95	_
$\{114\}$	-6.62	-6.62	_	29.29	29.29	_
$\{105\}$	-5.87	-6.12	0.45	27.28	27.87	0.48
$\{122\}$	-6.74	-6.67	0.33	29.33	29.33	—

Table 10: Surface and bulk X-ray elastic constants for magnesium (A = 0.02, a = 0.32094 nm and c = 0.52108 nm). Single crystal elastic constants were taken from Wazzan & Robinson (1967).

Table 11: Surface and bulk X-ray elastic constants for silicon (A = 0.11 and a = 0.5431 nm). Single crystal elastic constants were taken from McSkimin & Andreatch Jr (1964)

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl} \left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} \left[0 \right]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty \right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-1.05	-1.14	0.49	6.54	6.83	0.49
$\{220\}$	-1.25	-1.28	1.21	7.17	7.25	1.22
$\{311\}$	-0.43	-1.43	-0.01	7.88	7.71	-0.01
$\{400\}$	-1.93	-1.70	0.31	9.14	8.49	0.31
${331}$	-1.19	-1.24	0.76	6.99	7.13	0.77
$\{422\}$	-1.25	-1.28	1.21	7.17	7.25	1.22
$\{333\}$	-1.05	-1.14	0.49	6.55	6.83	0.49
$\{511\}$	-1.74	-1.58	0.24	8.56	8.14	0.24
$\{440\}$	-1.25	-1.28	1.21	7.17	7.25	1.22
$\{531\}$	-1.34	-1.34	_	7.44	7.44	—
$\{620\}$	-1.69	-1.55	0.21	8.40	8.04	0.21

Table 12: Surface and bulk X-ray elastic constants for α -zinc (A = 0.64, a = 0.26649 nm and c = 0.49468 nm). Single crystal elastic constants were taken from Alers & Neighbours (1908).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl} \left[\infty \right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} \left[0 \right]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
$\{100\}$	-2.47	-2.42	0.73	10.90	10.90	_
$\{110\}$	-2.47	-2.42	0.73	10.90	10.90	_
$\{002\}$	-5.51	-3.90	0.34	23.14	18.50	0.37
$\{101\}$	-2.07	-2.28	0.10	10.68	11.05	0.16
$\{102\}$	-2.42	-2.42	_	12.35	12.35	_
$\{110\}$	-2.47	-2.42	0.73	10.90	10.90	_
$\{103\}$	-3.10	-2.77	0.42	15.15	14.01	0.44
$\{200\}$	-2.47	-2.42	0.73	10.90	10.90	_
$\{112\}$	-2.05	-2.28	0.11	10.76	11.17	0.15
$\{201\}$	-2.36	-2.36	_	10.83	10.89	0.05
$\{004\}$	-5.51	-3.90	0.34	23.14	18.50	0.37
$\{202\}$	-2.07	-2.28	0.10	10.68	11.05	0.16
$\{104\}$	-3.75	-3.07	0.37	17.40	15.29	0.40
$\{203\}$	-2.01	-2.30	0.07	11.20	11.57	0.03
$\{120\}$	-2.47	-2.42	0.73	10.90	10.90	_
$\{211\}$	-2.38	-2.38	—	10.89	10.89	_
$\{114\}$	-2.60	-2.52	0.89	13.22	12.88	0.69
$\{105\}$	-4.21	-3.29	0.35	18.95	16.16	0.38
$\{122\}$	-2.22	-2.31	0.13	10.69	10.93	0.15

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{100}	-3.22	-3.34	0.07	13.94	13.60	-0.04
$\{110\}$	-3.22	-3.34	0.07	13.48	13.60	-0.04
$\{002\}$	-2.65	-2.88	0.44	11.28	11.96	0.43
$\{101\}$	-3.67	-3.60	0.64	14.56	14.33	0.65
$\{102\}$	-3.71	-3.61	0.65	14.55	14.27	0.64
$\{110\}$	-3.22	-3.34	0.07	13.48	13.60	-0.04
$\{103\}$	-3.42	-3.42	_	13.66	13.66	—
$\{200\}$	-3.22	-3.34	0.07	13.48	13.60	-0.04
$\{112\}$	-3.72	-3.63	0.59	14.68	14.41	0.58
$\{201\}$	-3.44	-3.44	_	13.89	13.89	_
$\{004\}$	-2.65	-2.88	0.44	11.28	11.96	0.43
$\{202\}$	-3.67	-3.60	0.64	14.56	14.33	0.65
$\{104\}$	-3.27	-3.27	_	13.01	13.16	0.05
$\{203\}$	-3.76	-3.66	0.57	14.77	14.45	0.56
$\{120\}$	-3.22	-3.34	0.07	13.48	13.60	-0.04
$\{211\}$	-3.40	-3.40	_	13.78	13.78	_
$\{114\}$	-3.63	-3.55	0.76	14.31	14.09	0.76
$\{105\}$	-3.04	-3.16	0.20	12.53	12.83	0.24
$\{122\}$	-3.53	-3.53	_	14.14	14.14	—

Table 13: Surface and bulk X-ray elastic constants for α -zirconium (A = 0.05, a = 0.3232 nm and c = 0.5147 nm). Single crystal elastic constants were taken from Fisher & Renken (1964).

Table 14: Surface and bulk X-ray elastic constants for germanium (A = 0.14 and a = 0.5658 nm). Single crystal elastic constants were taken from Bogardus (1965).

${hkl}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty\right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-1.16	-1.27	0.41	7.92	8.25	0.41
$\{220\}$	-1.46	-1.46	_	8.81	8.81	_
$\{311\}$	-1.78	-1.67	0.44	9.78	9.45	0.45
{400}	-2.34	-2.04	0.44	11.45	10.56	0.43
${331}$	-1.37	-1.40	0.36	8.54	8.65	0.36
$\{422\}$	-1.46	-1.46	_	8.81	8.81	_
{333}	-1.16	-1.27	0.41	7.92	8.25	0.41
$\{511\}$	-2.09	-1.87	0.44	10.70	10.06	0.44
{440}	-1.46	-1.46	_	8.81	8.81	_
$\{531\}$	-1.59	-1.54	0.48	9.21	9.08	0.47
$\{620\}$	-2.02	-1.82	0.44	10.49	9.92	0.44

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-6.48	-7.22	0.43	27.35	29.56	0.43
$\{200\}$	-14.06	-11.76	0.37	49.83	43.18	0.37
$\{220\}$	-8.24	-8.35	0.84	32.74	32.96	0.84
$\{311\}$	-10.27	-9.61	0.35	38.84	36.75	0.35
$\{222\}$	-6.48	-7.22	0.43	27.47	29.56	0.43
$\{400\}$	-14.06	-11.76	0.37	49.83	43.18	0.37
$\{420\}$	-10.21	-9.57	0.35	38.64	36.62	0.35
$\{422\}$	-8.24	-8.35	0.84	32.74	32.96	0.84
$\{440\}$	-8.24	-8.35	0.84	32.74	32.96	0.84
$\{600\}$	-14.06	-11.76	0.37	49.83	43.18	0.37
$\{442\}$	-7.25	-7.72	0.47	29.79	31.07	0.47

Table 15: Surface and bulk X-ray elastic constants for cadmium telluride (A = 0.38 and a = 0.648 nm). Single crystal elastic constants were taken from Deligoz *et al.* (2006).

Table 16: Surface and bulk X-ray elastic constants for titanium carbide (A = 0.01 and a = 0.43186 nm). Single crystal elastic constants were taken from Gilman & Roberts (1961).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl} \left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty \right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-0.48	-0.47	0.48	2.80	2.80	_
$\{200\}$	-0.42	-0.43	0.49	2.62	2.66	0.49
$\{220\}$	-0.46	-0.46	_	2.77	2.77	_
$\{311\}$	-0.45	-0.45	—	2.73	2.73	_
{222}	-0.48	-0.47	0.48	2.80	2.80	_
$\{400\}$	-0.42	-0.43	0.49	2.62	2.66	0.49
$\{331\}$	-0.47	-0.47	_	2.78	2.78	_
$\{420\}$	-0.45	-0.45	—	2.73	2.73	_
{422}	-0.46	-0.46	_	2.77	2.77	_
{333}	-0.48	-0.47	0.48	2.80	2.80	_
$\{511\}$	-0.43	-0.44	0.47	2.69	2.69	_

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
$\{100\}$	-0.27	-0.29	0.44	2.32	2.40	0.48
$\{002\}$	-0.20	-0.24	0.40	2.10	2.22	0.39
$\{101\}$	-0.39	-0.38	0.35	2.69	2.64	0.33
$\{102\}$	-0.44	-0.40	0.33	2.82	2.72	0.35
$\{2-10\}$	-0.27	-0.29	0.44	2.32	2.40	0.48
$\{103\}$	-0.39	-0.37	0.21	2.66	2.61	0.27
$\{2-12\}$	-0.41	-0.39	0.36	2.75	2.68	0.35
$\{201\}$	-0.31	-0.32	0.49	2.46	2.49	0.59
$\{203\}$	-0.44	-0.40	0.36	2.82	2.73	0.36
$\{210\}$	-0.27	-0.29	0.44	2.32	2.40	0.48
$\{211\}$	-0.29	-0.31	0.47	2.41	2.45	0.53
$\{114\}$	-0.43	-0.39	0.30	2.78	2.70	0.34
$\{105\}$	-0.30	-0.30	0.92	2.39	2.43	0.62
$\{212\}$	-0.35	-0.35	_	2.58	2.57	0.04
$\{300\}$	-0.27	-0.29	0.44	2.32	2.40	0.48
$\{213\}$	-0.41	-0.39	0.36	2.74	2.68	0.35
$\{214\}$	-0.44	-0.40	0.36	2.82	2.73	0.36

Table 17: Surface and bulk X-ray elastic constants for 2H silicon carbide (A = 0.08, a = 0.30763 nm and c = 0.50486 nm). Single crystal elastic constants were taken from Pizzagalli (2021).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
$\{102\}$	-0.38	-0.37	0.42	2.67	2.62	0.41
$\{103\}$	-0.42	-0.39	0.38	2.77	2.69	0.39
$\{104\}$	-0.42	-0.39	0.33	2.77	2.68	0.34
$\{105\}$	-0.41	-0.37	0.27	2.71	2.63	0.27
{110}	-0.28	-0.30	0.41	2.37	2.41	0.42
$\{106\}$	-0.39	-0.35	0.20	2.63	2.57	0.19
$\{202\}$	-0.32	-0.32	0.40	2.49	2.49	_
$\{205\}$	-0.41	-0.38	0.40	2.73	2.66	0.40
$\{206\}$	-0.42	-0.39	0.38	2.77	2.69	0.39
$\{109\}$	-0.30	-0.31	-0.10	2.43	2.43	_
$\{212\}$	-0.30	-0.31	0.41	2.46	2.46	_
$\{213\}$	-0.33	-0.33	_	2.51	2.51	_
{1010}	-0.30	-0.30	_	2.40	2.40	_
$\{214\}$	-0.35	-0.35	0.43	2.58	2.56	0.39
$\{215\}$	-0.38	-0.36	0.42	2.65	2.61	0.40
$\{300\}$	-0.28	-0.30	0.41	2.37	2.41	0.42
$\{209\}$	-0.42	-0.38	0.30	2.74	2.65	0.31

Table 18: Surface and bulk X-ray elastic constants for 4H silicon carbide (A = 0.06, a = 0.30784 nm and c = 1.00776 nm). Single crystal elastic constants were taken from Pizzagalli (2021).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{101}	-0.30	-0.31	0.24	2.42	2.46	0.29
$\{006\}$	-0.20	-0.24	0.40	2.11	2.22	0.37
$\{102\}$	-0.34	-0.34	_	2.54	2.54	_
$\{103\}$	-0.38	-0.36	0.58	2.66	2.62	0.53
$\{104\}$	-0.40	-0.38	0.46	2.73	2.66	0.45
$\{107\}$	-0.39	-0.37	0.36	2.69	2.63	0.44
$\{108\}$	-0.38	-0.36	0.34	2.64	2.60	0.45
$\{2-10\}$	-0.28	-0.30	0.30	2.38	2.43	0.35
$\{109\}$	-0.36	-0.35	0.30	2.59	2.56	0.49
$\{2-16\}$	-0.39	-0.37	0.50	2.70	2.64	0.49
$\{208\}$	-0.40	-0.38	0.46	2.73	2.66	0.45
$\{209\}$	-0.41	-0.38	0.43	2.74	2.67	0.44
$\{211\}$	-0.28	-0.30	0.29	2.38	2.43	0.34
$\{213\}$	-0.30	-0.31	0.21	2.44	2.47	0.28
$\{1015\}$	-0.29	-0.30	0.50	2.36	2.40	0.33
$\{217\}$	-0.36	-0.36	0.73	2.62	2.59	0.60
$\{219\}$	-0.39	-0.37	0.51	2.69	2.64	0.49

Table 19: Surface and bulk X-ray elastic constants for 6H silicon carbide (A = 0.05, a = 0.30793 nm and c = 1.51091 nm). Single crystal elastic constants were taken from Pizzagalli (2021).

Table 20: Surface and bulk X-ray elastic constants for 3C silicon carbide (A = 0.18 and a = 0.4348 nm). Single crystal elastic constants were taken from Pizzagalli (2021).

$\{hkl\}$	$\bar{s}_{1,hkl}[0]$	$\bar{s}_{1,hkl} \left[\infty \right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty\right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
$\{111\}$	-0.18	-0.22	0.34	2.10	2.22	0.34
$\{200\}$	-0.56	-0.47	0.36	3.24	2.96	0.36
$\{220\}$	-0.27	-0.28	0.11	2.38	2.41	0.11
$\{311\}$	-0.38	-0.35	0.47	2.70	2.61	0.47
$\{222\}$	-0.18	-0.22	0.34	2.11	2.22	0.34
$\{400\}$	-0.56	-0.47	0.36	3.24	2.96	0.36
$\{331\}$	-0.24	-0.26	0.24	2.30	2.35	0.24
$\{420\}$	-0.37	-0.35	0.48	2.69	2.61	0.47
$\{422\}$	-0.27	-0.28	0.11	2.38	2.41	0.11
$\{333\}$	-0.18	-0.22	0.34	2.11	2.22	0.34
$\{511\}$	-0.48	-0.42	0.39	3.00	2.81	0.39

Table 21: Surface and bulk X-ray elastic constants for tungsten carbide (A = 0.07, a = 0.29059 nm and c = 0.28367 nm). Single crystal elastic constants were taken from Lee & Gilmore (1982).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}$ $\infty]$	$\hat{k}_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty\right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}	,	TPa^{-1}	TPa^{-1}	,
{001}	-0.32	-0.33	0.35	1.60	1.64	0.38
$\{100\}$	-0.38	-0.36	0.46	1.96	1.91	0.44
$\{101\}$	-0.31	-0.32	0.19	1.68	1.70	0.21
$\{110\}$	-0.38	-0.36	0.46	1.96	1.91	0.44
$\{002\}$	-0.32	-0.33	0.35	1.61	1.64	0.38
{111}	-0.34	-0.34	_	1.79	1.79	_
$\{200\}$	-0.38	-0.36	0.46	1.96	1.91	0.44
$\{102\}$	-0.31	-0.32	0.38	1.60	1.64	0.39
$\{201\}$	-0.35	-0.34	1.17	1.82	1.82	_
$\{112\}$	-0.31	-0.32	0.28	1.65	1.68	0.30
$\{210\}$	-0.38	-0.36	0.46	1.96	1.91	0.44
$\{003\}$	-0.32	-0.33	0.35	1.61	1.64	0.38
$\{202\}$	-0.31	-0.32	0.19	1.68	1.70	0.21
$\{211\}$	-0.36	-0.35	0.72	1.88	1.85	0.63
$\{103\}$	-0.31	-0.32	0.38	1.60	1.64	0.38
$\{300\}$	-0.38	-0.36	0.46	1.96	1.91	0.44
$\{301\}$	-0.36	-0.35	0.64	1.89	1.86	0.58

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} \left[0 \right]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{100}	-0.82	-0.82	_	3.80	3.80	_
$\{110\}$	-0.82	-0.82	_	3.80	3.80	_
$\{200\}$	-0.82	-0.82	_	3.80	3.80	_
$\{101\}$	-0.73	-0.75	1.58	3.40	3.48	1.23
$\{210\}$	-0.82	-0.82	_	3.80	3.80	_
$\{301\}$	-1.01	-0.96	0.36	4.32	4.16	0.38
$\{221\}$	-1.01	-0.95	0.40	4.30	4.15	0.40
$\{320\}$	-0.82	-0.82	_	3.80	3.80	_
$\{002\}$	-0.48	-0.58	0.56	2.64	2.93	0.54
$\{231\}$	-0.98	-0.93	0.45	4.22	4.10	0.41
$\{411\}$	-0.97	-0.93	0.46	4.20	4.09	0.42
$\{330\}$	-0.82	-0.82	_	3.80	3.80	_
$\{212\}$	-0.83	-0.83	_	3.71	3.71	_
$\{511\}$	-0.94	-0.91	0.49	4.11	4.03	0.41
$\{430\}$	-0.82	-0.82	_	3.80	3.80	_
$\{232\}$	-0.99	-0.94	0.21	4.22	4.08	0.30
$\{142\}$	-1.00	-0.95	0.24	4.25	4.10	0.32
$\{610\}$	-0.82	-0.82	—	3.80	3.80	_
$\{521\}$	-0.92	-0.89	0.51	4.06	4.00	0.40

Table 22: Surface and bulk X-ray elastic constants for silicon nitride (A = 0.14, a = 0.76044 nm and c = 0.29075 nm). Single crystal elastic constants were taken from Vogelgesang *et al.* (2000).

Table 23: Surface and bulk X-ray elastic constants for titanium nitride (A = 0.06 and a = 0.424 nm). Single crystal elastic constants were taken from Fodil *et al.* (2014).

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty \right]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{111}	-0.64	-0.60	0.43	2.95	2.85	0.43
$\{200\}$	-0.41	-0.45	0.40	2.29	2.40	0.40
$\{220\}$	-0.58	-0.56	0.57	2.78	2.74	0.58
$\{311\}$	-0.51	-0.52	0.14	2.59	2.61	0.15
$\{222\}$	-0.64	-0.60	0.43	2.95	2.85	0.43
$\{400\}$	-0.41	-0.45	0.40	2.29	2.40	0.40
$\{331\}$	-0.59	-0.58	0.50	2.83	2.77	0.51
$\{420\}$	-0.51	-0.52	0.13	2.60	2.62	0.13
$\{422\}$	-0.58	-0.56	0.57	2.78	2.74	0.58
$\{333\}$	-0.64	-0.60	0.43	2.95	2.85	0.43
$\{511\}$	-0.46	-0.48	0.34	2.42	2.50	0.34

$\{hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty ight]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
	TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{012}	-0.51	-0.54	0.13	2.85	2.93	0.13
$\{104\}$	-0.67	-0.64	0.62	3.37	3.26	0.62
$\{110\}$	-0.55	-0.55	_	2.95	2.95	_
$\{113\}$	-0.62	-0.61	0.96	3.19	3.13	0.97
$\{024\}$	-0.51	-0.54	0.13	2.88	2.93	0.13
$\{116\}$	-0.62	-0.61	1.01	3.22	3.16	0.95
$\{214\}$	-0.67	-0.64	0.65	3.33	3.22	0.65
${300}$	-0.55	-0.55	_	2.95	2.95	_
$\{226\}$	-0.62	-0.61	0.96	3.19	3.13	0.97
$\{2110\}$	-0.65	-0.62	0.72	3.31	3.22	0.70
$\{1310\}$	-0.57	-0.57	_	3.04	3.04	_
$\{3012\}$	-0.67	-0.64	0.62	3.37	3.26	0.62
$\{2014\}$	-0.53	-0.55	0.16	2.99	3.02	0.06
$\{416\}$	-0.69	-0.65	0.60	3.38	3.25	0.60
$\{4010\}$	-0.74	-0.68	0.45	3.57	3.38	0.45
{330}	-0.55	-0.55	_	2.95	2.95	_

Table 24: Surface and bulk X-ray elastic constants for α -corundum (A = 0.07, a = 0.47606 nm and c = 1.2994 nm). Single crystal elastic constants were taken from Tefft (1966).

Table 25: Surface and bulk X-ray elastic constants for cubic zirconia (A = 0.52 and a = 0.509 nm). Single crystal elastic constants were taken from Kandil *et al.* (1984).

$\{hkl\}$	$\bar{s}_{1,hkl} \begin{bmatrix} 0 \end{bmatrix}$	$\bar{s}_{1,hkl} \left[\infty \right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} [0]$ TPa ⁻¹	$\frac{1}{2} \bar{s}_{2,hkl} \left[\infty\right]$	$k_{2,hkl}$
	2 10	1 70	0.30	8.00	7.06	0.30
{200}	-2.10	-1.75	0.59	3.80	1.00	0.59
[200]	-0.71	-0.87	0.00	5.82 6.00	4.20 6.25	0.00
$\{220\}$	-1.11	-1.50	0.30	0.90 F 70	0.55	0.30
{311}	-1.47	-1.30	0.06	5.76	5.57	0.05
$\{222\}$	-2.10	-1.79	0.39	7.94	7.06	0.39
$\{400\}$	-0.71	-0.87	0.50	3.82	4.28	0.50
$\{331\}$	-1.86	-1.62	0.33	7.20	6.56	0.33
$\{420\}$	-1.46	-1.30	0.07	5.80	5.60	0.07
$\{422\}$	-1.77	-1.56	0.30	6.90	6.35	0.30
{333}	-2.10	-1.79	0.39	7.94	7.06	0.39
$\{511\}$	-1.00	-1.06	0.94	4.69	4.85	0.93
$\{440\}$	-1.77	-1.56	0.30	6.90	6.35	0.30
$\{531\}$	-1.61	-1.45	0.24	6.43	6.03	0.24
$\{442\}$	-1.95	-1.69	0.35	7.48	6.75	0.35
$\{600\}$	-0.71	-0.87	0.50	3.82	4.28	0.50
$\{620\}$	-1.09	-1.11	2.11	4.94	5.02	2.14
{533}	-1.92	-1.66	0.34	7.36	6.67	0.34

Table 26: Surface and bulk X-ray elastic constants for tetragonal zirconia (A = 0.23, a = 0.3579 nm and c = 0.5165 nm). Single crystal elastic constants were taken from Kisi & Howard (1998).

{	$hkl\}$	$\bar{s}_{1,hkl}\left[0 ight]$	$\bar{s}_{1,hkl}\left[\infty\right]$	$k_{1,hkl}$	$\frac{1}{2} \bar{s}_{2,hkl} \left[0 \right]$	$\frac{1}{2} \bar{s}_{2,hkl} [\infty]$	$k_{2,hkl}$
		TPa^{-1}	TPa^{-1}		TPa^{-1}	TPa^{-1}	
{	101}	-1.53	-1.45	0.29	6.81	6.55	0.31
{	002	-0.74	-0.93	0.41	4.91	5.39	0.39
{	$110\}$	-1.57	-1.47	0.23	6.67	6.44	0.21
{	112	-1.77	-1.61	0.39	7.62	7.14	0.39
{	$200\}$	-0.92	-1.02	0.61	4.75	5.11	0.59
{	103	-1.26	-1.26	_	6.28	6.28	_
{	211	-1.49	-1.42	0.23	6.53	6.33	0.21
{	$202\}$	-1.53	-1.45	0.29	6.81	6.55	0.31
{	$004\}$	-0.74	-0.93	0.41	4.91	5.39	0.39
{	$220\}$	-1.57	-1.47	0.23	6.67	6.44	0.21
{	213	-1.71	-1.58	0.41	7.45	7.02	0.41
{	$301\}$	-1.06	-1.12	0.86	5.21	5.42	0.77
{	$204\}$	-1.51	-1.43	0.24	6.93	6.69	0.28
{	$312\}$	-1.47	-1.40	0.21	6.51	6.33	0.20
{	$105\}$	-0.99	-1.09	0.55	5.58	5.81	0.58
{	$224\}$	-1.77	-1.61	0.39	7.62	7.14	0.39
{	$400\}$	-0.92	-1.02	0.61	4.75	5.11	0.59
{	$215\}$	-1.49	-1.41	0.19	6.89	6.66	0.25
{	314	-1.66	-1.54	0.41	7.29	6.91	0.41