

Volume 56 (2023)
Supporting information for article:

Escape our Lab - creating an escape room game in the field of materials science and crystallography

Christian Schimpf, Jonas Lachmann, Marius H. Wetzel, Peter D. B. Fischer, Andreas Leineweber and David Rafaja

In the following, we present some images of our participation certificates and the design of our hints as stimulation for readers who want to develop our ideas further.

Figure S1 Participation certificate including links to web domains related to studies at our university and to an independent portal with information on the course 'Materials Science and Engineering' at the TU Bergakademie Freiberg.
Application/knowledge

Figure S2 Take-home messages for the short variant of the game, including short descriptions of the scientific background of the game.

| | Application/knowledge |
| :--- | :--- | :--- |
| - Ferromagnetism breaks down above the | |
| Curie temperature. | |

Figure S3 Take-home messages for the long variant of the game, including short descriptions of the scientific background of the game.

To-do list for lab assistants

Task	Done
Prepare lab for pupils	而
Count screws	
Clear tables in the seminar room	
Remove cast metal from the sand form	
Count rotation axes in jigsaw puzzle; what is at the end of the highlighted direction	
Identify error in the elastic constants of hexagonal BN	
Check the lattice constant of the grating for the practical course 'laser diffraction' (rounded in $\mu \mathrm{m})$	
Prepare sample C47b and identify the material	
Fill the Erlenmeyer flasks	
Call the head of the lab	

Figure S4 To-do list as 'guidance' through the whole escape room (short version).

To-do list for lab assistants

Task	Done
Prepare lab for pupils	而
Count screws	
Clear tables in the seminar room	
Remove cast metal from the sand form	
Count rotation axes in jigsaw puzzle; what is at the end of the highlighted direction.	
Identify the error in the elastic constants of hexagonal BN	
Check the lattice constant of the grating for the practical course 'laser diffraction' (rounded in $\mu \mathrm{m})$	
Prepare sample C47b and identify the material	
Melt metal	
Identify samples of which the EDX spectra were taken	
Determine their density in g/cm 3 (round to integer)	
Assign electron diffraction patterns to the correct image	
Call the head of the lab	

Figure S5 To-do list as 'guidance' through the whole escape room (long version).

Below, we show our additional hints that may be provided to the players depending on their prior education or knowledge. For secondary school pupils, we found that most of them are relevant. For undergraduate students, almost none of them needs to be provided. For other player groups, notes with a reduced information depth may be used/prepared. The original versions of the additional hints are handwritten. This gives them a higher authenticity as laboratory notes.

Figure S6 Additional hint for puzzle (1).

Rotation axes

$>$ When an object is rotated around a rotation axis, it is congruent to itself $>$ Four different types of rotation axes exist

$>$ The label of the axis defines the rotation angle, which is equal to $360 / \mathrm{n}$ $>$ Such rotation axes can be found in the lattice of crystalline materials,

Figure S7 Additional note for puzzle (2).

directions in crystal lattices

$>$ directions in crystalline lattices ave designated by vectors
$>$ this concept is known from vector algebra in mathematics
$>$ in crystalline lattices, the coordinate systems ave sometimes not orthogonal or equal spaced
examples for different directions (in a cubic system):

Figure S8 Additional note for puzzle (3).

Elastic constants
$>$ solids can deform elastically under the action of forces on them
$>$ required forces for the deformation are different along different directions
$>$ numbers are required that reffeet this behaviour: they are called tensor and occur in a 6×6 grid example for hexagonal materials

- equal numbers zeros
$>$ the tensor is symmetric (upper and lower triangle are identical)

Figure S9 Additional note for puzzle (4).
sample preparation
$>$ required to inspect materials under the optical mieroseope
$>$ surface must be ground and polished
manual LaboPot-25
$>$ remove metal ring, moist turntable with water, insert princling paper, mount metal ring
$>$ switch on device, adjust to 200 rpm, vine with water
$>$ now put the sample on the turntable and grind with slight pressure near the vim
$>$ turn the sample from time to time
procedure
>60 s grinding with P2400 paper
>30 s polish with P 4000 paper
Figure S10 Additional note for puzzle (6).
practical course: laser diffraction
$>$ diffraction of monochromatic light at a 2D periodic prating setup $\overrightarrow{\text { laser }} \longrightarrow \underset{\text { prating }}{ }$ क) $\because b$
α... diffraction angle
a... distance prating-call
b... distance between diffraction maxima

What to do? - set up experiment

- choose appropriate distance to call
- measure a and b, calculate angle
- calculate interplanar distance (round to integer)

$$
d=\frac{n \cdot \lambda}{\sin \alpha}
$$

$$
n=1
$$

d... lattice constant
n... diffraction order
d... lattice constant
n... diffraction order

$$
n=2 \quad n=1 \quad 0 \quad 0 \quad 0 \quad i=1 \quad n=2
$$

λ.. eavelength of laser

Figure S11 Additional note for puzzle (7).

Hydrophilic and hydrophobic loves cater
fears cater
$>$ hydrophilic substances dissolve in water
$>$ hydrophobic substances do not dissolve in water
$>$ hydrphylie and hydrophobic substances cannot be mixed

examples:

- water and oil are immiscible
- waterproof pens do not smear out when in contact with water

Figure S12 Additional note for puzzle (8) from the short version.

Refraction of light
$>$ refraction occurs when light hits an interface between two optically different media
$>$ a fraction of light will be reflected, the other is refracted and transmitted
$>$ upon refraction light changes its direction of propagation the new direction of

Snell s law
 propagation depends on the index of refraction of the media
$>$ multiple refraction at many interfaces destroys transparaney
(known from crushed glass)
Hydroged
$>$ is a polymeric material able to absorb large amounts of water
$>$ its molecules form a 3D network into which water can permeate

$>$ soaked hycrogel balls contain mostly water, therefore have almost the same optical properties as water $>$ hycrogel balls have (almost) the same index of refraction as water

Figure S13 Additional note for puzzle (9) from the short variant.

THE MEL TING POINT OF MATERIALS

MELTING $=$ TRANSITION FROM THE SOLID TO THE LIQUID STATE

MATERIAL	MELTING POINT [K]
ZN	693
CU	1358
TI	1941
TA	3290
MG	923
GA	303
SN	505
MO	2896
AL	933
PB	601
BRASS	$1173 \ldots 1323$
304 STEEL	$1720 \ldots 1790$
W	3695
C-STEEL	~ 1800

EXPLANATION:

- ATOMIC VIBRATIONS IN THE LATTICE INCREASE WITH TEMPERATURE
- BONDS BETWEEN ATOMS BREAK WHEN VIBRATIONS GET TOO LARGE
(ENTHALPY OF FORMATION IS EXCEEDED)
- MATERIAL MELTS

MELTING TEMPERATURE
$\approx\left\{\begin{array}{l}\text { BOND ENERGY } \\ \text { MASS OF ATOMS } \\ \text { KINETIC ENERGY TO SEPARATE } \\ \text { ATOMS }\end{array}\right\}$

IS THE NEXT HINT BURIED IN ONE OF THE METALS?

Figure S14 Additional note for puzzle (10) from the long variant.

EDE
(energy dispersive X-ray spectroscopy)
$>$ method to determine the chemical composition
$>$ a spectrum is recorded that consists of peaks and a background

determine elements:
example
$>$ each peak can be assigned to a chemical element
$>$ each clement may produce several peaks
$>$ peak positions for the cements are tabulated
determine chemical composition
$>$ find peaks of the given clements in the table
$>$ measure the weight of the peaks after cutting off the background
$>$ apply the following formula to determine the ratio between the two elements:

$$
\frac{\text { fraction } A}{\text { fraction } B}=\frac{\text { weight of Peak of } A}{\text { weight of peak of } B} \cdot 0,44 \pi
$$

Figure S15 Additional note for puzzles (11) and (12) from the long variant
electron Diffraction
$>$ scattering of an electron beam by crystalline matter creates a diffraction pattern
$>$ direction of incidence and lattice symmetry determine symmetry of the diffraction pattern

results
$>$ creates astronomically high costs
$>$ cheek for individual diffraction spots! (see table)

Be acsave of overlapping spots!

Figure S16 Additional note for puzzle (13) from the long variant

