

Volume 56 (2023)

Supporting information for article:

Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts

Jakob Schröder, Alexander Evans, Vladimir Luzin, Guilherme Abreu Faria, Sebastian Degener, Efthymios Polatidis, Jan Čapek, Arne Kromm, Gleb Dovzhenko and Giovanni Bruno

Technique	radiation	reflection Diffraction angle	ψ/χ-tilting (steps)	φ-tilting (steps)	assumptions
Laboratory XRD Xstress G3	Monochromatic, Mnkα	Ni-311 20 ≈ 156°	-45° to 45° (19)	0°, 90°	Top: $\sigma_{i3} = 0$ $\sigma_{12} = 0$ Side: $\sigma_{i1} = 0$ $\sigma_{23} = 0$
Synchrotron XRD P61A	Energy dispersive, 30 - 200 keV	Ni - 311 E ≈ 55 keV 20 ≈ 11.946°	0 to 80° (20)	0 - 360° 3, 7, 8 ,9 (5°) 1, 2, 4, 5 (15°)	-
Neutron diffraction POLDI Neutron diffraction KOWARI	Time of flight, $Q \approx 1-8 \ 2\pi d^{-1}$ Monochromatic, $\lambda = 1.53 \ \text{\AA}$	$2\theta \approx 90^{\circ} \pm$ 15° Ni-311 $2\theta \approx 90^{\circ}$	2 orthogonal directions (BD, T) 3 orthogonal directions (BD, T, L)		-

 Table S1: Overview of the measurement conditions for the different diffraction techniques.

Table S2: Obtained eigenvalues for the top surfaces of the specimen $H_{0^{\circ}}$ and $H_{45^{\circ}}$ according to the measurement positions 1-9 acquired by energy dispersive synchrotron diffraction.

H _{45°}	#d ³¹¹	σ' _T -σ' _{BD} /MPa	σ'l-σ'bd /MPa	φ _p /°	H _{0°}	#d ³¹¹	σ' _T -σ' _{BD} /MPa	σ'l-σ'bd /MPa	φ _p /°
1	381	414 ± 18	265 ± 18	21.9 ± 3.6	1	384	392 ± 20	300 ± 20	8.3 ± 7
2	382	381 ± 18	46 ± 17	8.8 ± 1.1	2	384	393 ± 19	172 ± 19	-1.0 ± 0.8
3	1863	255 ± 8	57 ± 8	18.5 ± 1.1	3	1833	384 ± 9	178 ± 9	0 ± 0.6
4	382	367 ± 17	92 ± 17	12.3 ± 1.4	4	384	383 ± 18	154 ± 17	4.2 ± 1.4
5	377	387 ± 19	209 ± 19	17.6 ± 2.8	5	383	371 ± 18	256 ± 17	7.5 ± 3.3
H _{45°}	#d ³¹¹	σ' _{BD} -σ' _T /MPa	σ' _L -σ' _T /MPa	φ _p /°	H _{0°}	#d ³¹¹	σ' _{BD} -σ' _T /MPa	σ' _L -σ' _T /MPa	φ _p /°
7	1511	265 ± 9	12 ± 7	-0.5 ± 0.7	7	1512	391 ± 10	96 ± 9	-1.3 ± 0.5
8	1512	257 ± 9	17 ± 7	$\textbf{-2.4}\pm0.6$	8	-	-	-	-
9	1512	278 ± 8	10 ± 4	$\textbf{-2.0}\pm0.6$	9	1512	399 ± 10	61 ± 8	$\textbf{-4.2}\pm0.5$