

Volume 56 (2023)

Supporting information for article:

\bar 101 contact twins in gypsum experimentally obtained from calcium carbonate enriched solutions: mineralogical implications for natural gypsum deposits

Andrea Cotellucci, Fermín Otálora, Àngels Canals, Joaquin Criado-Reyes, Luca Pellegrino, Marco Bruno, Dino Aquilano, Juan Manuel Garcia-Ruiz, Francesco Dela Pierre and Linda Pastero

S1. Optical microscopy image

Figure S1 Optical microscopy image of $\overline{101}$ contact twin observed in G2 solution. By means of optical microscopy under crossed polarizers we measured 26° as extinction angle among the individuals forming the twin, and thus, we identified the $\overline{101}$ twin law.

S2. The extinction angles for the five twin laws

To calculate the extinction angles of the five gypsum twin laws, it is required to:

- i) Project the optical indicatrix of gypsum on the (010) plane (Fig. S2).
- ii) Apply the twin law to generate the "twinned optical indicatrix" (T) (Fig. S3).
- iii) Measure the angle value generated between the "old" refractive indices (e.g., γ) and the new one (γ_T or α_T) (Fig. S3). The value of this angle represents the extinction angle for the twin law, i.e., how much to rotate the crystal to move the twinned sub-crystal into extinction position when the parent sub-crystal is already extinguished.

Gypsum

Crystal system : monoclinic Point group: 2/m Space group: C2/c (De Jong and Bouman, 1939) Cell parameters: ao = 5.63 $b_0 = 15.15$ со = б.23 $\beta = 113.5^{\circ}$ $[001]\hat{0}\alpha = 38^{\circ}$ $[001]\hat{c}_{0}\gamma = 52^{\circ}$ [001] α Co 52° γ $\beta = 113.5^{\circ}$ ào [100]

Figure S2 Gypsum reference frame used to measure the extinction angles of the five gypsum twin laws (De Jong and Bouman, 1939). α and γ represent the refractive indices of gypsum (α =1.519 – 1.521; γ =1.529 – 1.531) (Chang et al., 1996). The monoclinic *C2/c* space group of gypsum ($a_0 = 5.63$, $b_0 = 15.15$, $c_0 = 6.23$ Å; $\alpha = \gamma = 90^\circ$; $\beta = 113.50^\circ$) (De Jong and Bouman, 1939) was used to project the optical indicatrix of gypsum on the (010) plane.

Figure S3 Extinction angles of the five gypsum twin laws.