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S1. Geometric definition of  

 

This section details the geometric foundations for equation (5): 

 cos = − sin p cos s cos p − s + cos p sin s (S1) 

where the orientation angles p, p  and the scattering angles 2 s, s  define the angle 

 between the particle axis, ⃑, and the scattering vector, ⃑. We begin with the definition 

of ⃑: 
 ⃑ = ⃑i − ⃑s (S2) 

where ⃑i is the incident beam wavevector and ⃑s is the scattered neutron wavevector. 

Each of the vectors can be expressed in Cartesian coordinates, where the particle length 

is: 

 ⃑ = sin p cos p , cos p , sin p sin p  (S3) 

the incident wavevector is: 

 ⃑i = 0, , 0  (S4) 

the elastically scattered wavevector is: 

 ⃑s = sin 2 s cos s , cos 2 s , sin 2 s sin s  (S5) 

the scattering vector is: 

 ⃑ = − sin 2 s cos s , 1 − cos 2 s , − sin 2 s sin s  (S6) 

and  is the magnitude of the incident and scattering wavevectors for elastic scattering. 

 is the angle between the primary particle axis and the scattering vector defined by: 

 cos ≡ ⃑ ∙ ⃑| ⃑|| ⃑| (S7) 

where: 

 ⃑ =  (S8) 

and: 
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 | ⃑| = = 2 sin s (S9) 

Substituting Eqs. (S3), (S6), (S8) and (S9) into equation (S7) yields: 

 cos = sin p cos p − sin 2 s cos s + cos p 1 − cos 2 s + sin p sin p − sin 2 s sin s2 sin 2 s  (S10)

which simplifies to: 

 cos = − sin p cos s cos p − s + cos p sin s (S11)

For backscattering 2 s = , s = 0  from a particle perpendicular to the vorticity 

direction ( p = 0),  approaches 0 and  at p = 0 and , as expected. equation (S11) 

matches equation (4.40) of (Fuller, 1995) except for a change in sign resulting from an 

alternative definition for ⃑ = ⃑s − ⃑i, which differs from equation (S2) by a negative sign. 

 

S2. Bin count, annular area and alignment factor 

 

Fig. S2 summarizes the bin counts and annular areas used to calculate alignment 

factor in Fig. 7 for a 2D theoretical scattering pattern of cylindrical particles having =1800 Å, = 20 Å, and 5 % radial polydispersity. The minimum bin count was allowed 

to drop below the recommended 20 bins to give an idea of the alignment factor at low-

, where 20 bins could not be achieved for the finite detector grid spacing used. The 

reported annular area is the smallest that can be achieved while maintaining the 

minimum bin count for a square detector grid spacing of = 0.001 Å . This minimum 

annular area can be generalized to other square detector grid spacings using: 

A,2 = A,1 (S1) 

where  is the distance between adjacent data points for Fig. 2 and Fig. 7 of 0.001 Å , 

 is the distance between data points for a second detector grid spacing, A,1 is the 

annular area using  and A,2 is the estimated annular area for . equation (S1) can be 
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used as a starting point for finding the inner and outer radii which satisfy the bin 

requirement for any grid spacing. 

When bin count is held constant and  increases up to ≈ 0.007 Å , the annular 

area decreases, where each sharp increase in Fig. S2b and Fig. S2d corresponds to an 

increase in bin count (Fig. S2a and Fig. S2c). The pattern in annular area disappears at > 0.007 Å  because the bin count is not increased beyond the recommended 

minimum of 20 bins. This allows annular area to vary depending on how well pixels fit 

within the annulus at each .  

Rod tilt relative to the neutron beam, p, does not influence the bin selection or the 

annular area chosen, where points for each p in Fig. S2 lie on top of each other. Bin 

selection and annular area are independent of the scattering particle and are reliant only 

upon the data resolution and available -range. 
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Table S1: Dimensional variables ≡ length; ≡ mass; ≡ time; ≡ temperature; ℝ ≡ All real numbers 

Name Symbol Dimensions Range 

Annular area A  0 ≤ A 

Average scattering vector   0 ≤  

Background scattering   0 ≤ ≤ ∞ 

Detector grid spacing, nearest neighbor   0 <  

Diameter, cylinder   0 ≤  

Flow velocity vector ⃑  ℝ 

Form factor ,   0 ≤ ,  

Form function ,   0 ≤ ,  

Length, cylinder   0 ≤  

Length, projected cylinder c  0 ≤ c 

Particle Volume  0 ≤ ≤ ∞ 

Radius, cylinder   0 ≤  

Relaxation Time R  0 ≤ R 

Scattering axis, normal to incident 

beam-vorticity plane 
⃑x  ℝ 

Scattering axis, parallel to vorticity axis ⃑y  ℝ 

Scattering intensity ,   0 ≤ ,  

Scattering intensity, parallel to cylinder 

axis 
∥   0 ≤ ∥  

Scattering intensity, perpendicular to 

cylinder axis 
⟂   0 ≤ ⟂  

Scattering Length Density Difference 

(contrast) 
Δ   ℝ 
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Scattering Vector Magnitude   0 ≤  

Scattering vector range for integration 

or annular averaging 
Δ   0 ≤ Δ  

Total Volume   0 ≤ ≤ ∞ 

Viscosity, zero-shear   0 <  

Wave vector, incident beam ⃑i  ℝ 

Wave vector, magnitude   0 ≤  

Wave vector, scattered ⃑s  ℝ 

Wavelength   0 <  

-coordinate axis, normal to incident 

beam-vorticity plane 
⃑  ℝ 
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Table S2: Dimensionless variables 
 

Name Symbol Range 

Alignment factor f −2 ≤ f ≤ 1 

Alignment factor, cosine expansion f,cos −1 ≤ f,cos ≤ 1 

Alignment factor, integrated axes f,int −∞ ≤ f,int ≤ 1 

Alignment factor, Legendre expansion f,L −2 ≤ f,L ≤ 1 

Angle between ⃑ and ⃑ 0 ≤ < 2π 

First Bessel function zero , , = 3.8317 

First order Bessel function of the first kind J sin −0.4 < J sin < 0.6
Form factor, normalized , 0 ≤ , ≤ 1 

Half-Angle Between Incident and Scattered 

Neutrons 
s 0 ≤ s ≤  

Particle orientation angle, azimuthal p 0 ≤ p ≤ π 

Particle orientation angle, azimuthal p 0 ≤ p ≤ π 

Scattering angle, azimuthal 0 ≤ ≤ 2π 

Scattering angle, primary scattering axis , 0 ≤ , < 2π 

Sector angle, azimuthal  0° ≤ ≤ 90° 

Sector width Δ  0° ≤ Δ ≤ 180° 

Structure Factor 0 < ≤ ∞ 

Volume fraction 0 ≤ ≤ 1 
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Fig. S1: Theoretical, (a) – (c), and experimental, (d) – (f), 2D small-angle scattering 

patterns generated from a theoretical suspension of rigid rods and from 
SANS measurements of a worm-like micelle solution, where the label in 
the upper right corner of each scattering image corresponds to .  
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Fig. S2: The bin count (a, c) and annular area (b, d) used for cosine (a, b) and 

Legendre (c, d) expansion calculations of alignment factor for a smeared 
2D theoretical scattering pattern of cylindrical particles having =1800 Å, = 20 Å, and 5% radial polydispersity, where the alignment 
factor is reported in Fig. 7. The bin count and annular area is identical for 
each particle orientation,  p, such that points lie on top of each other. 
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Fig. S3: (a) Scattering intensity curve of a theoretical cylinder with = 1800 Å and = 20 Å at p = π along the + y (perpendicular) and + x (parallel) 

scattering axes versus dimensionless scattering vector, , illustrating the 
typical range of 2 ≤ ≤ , ⁄  for calculating (b) alignment factor, f, 
where the -range, Δ , included in the integration changes f by < 3 %. 
The minimum of = 2  corresponds to the peak of the first oscillation 
of the exact curve in (b), while the maximum at = , ⁄  coincides 
with the first asymptote.  
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Fig. S4: Annular area, A, used to estimate alignment factor in Fig. 9 for 

CTAB/NaSal WLM scattering data with the (a) cosine and (b) Legendre 
expansion methods, where annular area only depends on the 
requirement to have 20 evenly spaced bins containing at least one data 
point and is not correlated with average -value, . 
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