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1. Distortion Corrections

The measured x-ray total scattering patterns collected with our PE-1621 detector in

both the traditional and inclined configurations are found to be distorted in a manner

that cannot be easily corrected for by changing the geometry. In order to quantify and

correct the observed distortions, a methodology is presented.

The x-ray total scattering pattern of a powdered silicon lab standard (NIST SRM

640f) is measured in both detector configurations at a temperature of 100K. The detec-

tor geometry for each configuration is then calculated by scattering pattern refinement

of experimentally measured silicon and a theoretically calculated Fd3m silicon cali-

brant. The silicon pattern is generated at a lattice constant of 5.42940Å, the reference

value for Fd3m silicon at 100K, as presented by (Shah, 1971). The silicon pattern

generation and geometry refinements are performed using the PyFAI python library

(Kieffer et al., 2020). Generation of the detector geometries allows for the assignment

of the scattering angle 2θGeometry and the azimuthal angle χGeometry to each detector

pixel. Additionally, the magnitude of the reciprocal space vector QGeometry can be
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calculated for each pixel using Equation 1, where λ is the wavelength of the incident

x-ray beam.

Q =
4π

λ
sin

(
2θ

2

)
(1)

The geometry refinement process minimizes the difference between the theoreti-

cally calculated and experimentally measured Debye-Schrrer rings. The Debye-Schrrer

rings, in both theoretical and experimental scattering patterns, span the full range

of χGeometry. A theoretical Debye-Schrrer ring is assigned a single QGeometry value

defined as QCalculated across the entire range in χGeometry. Conversely, the experimen-

tal Debye-Schrrer rings are measured at an array of assigned QGeometry values defined

as QObserved across the entire range in χGeometry. The geometry parameters are refined,

redistributing the calculated QGeometry for each pixel of the detector to minimize the

differences between the assigned values of QCalculated and QObserved for each Debye-

Schrrer ring. However, a flat panel area detector such as the PE-1621 contains innate

distortions which produce differences between the assigned values of QCalculated and

QObserved, which cannot be corrected by changes in geometry.

A distortion correction is necessary to address the remaining deviations between

QCalculated and QObserved that could not be corrected for by the geometry refinement.

Quantifying the distortion correction entails dividing the two-dimensional x-ray total

scattering pattern into sampled regular intervals spanning 2θGeometry and χGeometry.

Each sampled interval consists of a wedged shape region with dimensions of 5◦ in

2θGeometry by 3◦ in χGeometry. The set of sampled intervals forms a grid across the

surface of the detector containing 720 sampled regions in the traditional geometry and

540 sampled regions in the inclined geometry. Within each sampled region, the total

scattering signal is interpolated to a regular two-dimensional grid with dimensions

QGeometry by χGeometry using custom Python code and then integrated along χGeometry
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to a one-dimensional pattern in QGeometry. The one-dimensional patterns assigned to

each sampled interval are then all Rietveld refined individually using scriptable GSAS-

II (O’Donnell et al., 2018; Toby & Von Dreele, 2013).

In each Rietveld refinement, the wavelength of the incident x-ray beam λ is made

a variable parameter while the lattice constant is set to a fixed value. Using Equation

1, the refined wavelength λ′ gives the average QObserved in each sampled region. Once

QObserved is calculated for all sampled regions, a spline fit enables QObserved to be

calculated for each detector pixel. QObserved is then used when interpolating the mea-

sured scattering patterns to regular two-dimensional grids of dimensions QObserved by

χGeometry. Using QObserved in place of QGeometry corrects the distortions in the result-

ing interpolated patterns. Presented in Figure 3 are the quantified corrections to the

magnitude of the reciprocal space vector ∆QCorrection, calculated by taking the dif-

ference between QObserved and QGeometry in refined geometries for the traditional and

inclined configurations.
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Fig. 1. Correction to the magnitude of the reciprocal space vector ∆QCorrection =
QObserved −QGeometry in a) traditional and b) inclined geometries. Each correction
is calculated by quantifying the difference in Q for experimentally measured silicon
and the theoretically calculated silicon calibrant at 100K.

2. PE-1621 Statistical Noise

The statistical noise of a single pixel in the PE-1621 detector was experimentally

determined to follow Poisson-like statistics as defined in Equation 2.

σCounts =
√
βNCounts (2)

The statistics of a single pixel in the PE-1621 detector differs from Poisson statistics

by a scaling factor β for a gain setting of 0.25pF (Michel et al., 2006). In order to

experimentally determine the statistical behavior of the detector a series of flood field

measurements were conducted. The detector was uniformly illuminated with a series

of intensities adjusted by increasing or decreasing the incident flux as seen by the
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detector. A small region of interest (ROI) was selected where the intensity was most

uniform and intense. At each selected incident flux, 1024 snapshots were collected. The

standard deviation of the individual pixels σTotal in the ROI for the 1024 snapshots

was calculated using Equation 3. Here, Ii is the raw measured intensity of a pixel in

a single snapshot and N is the total number of snapshots.

σTotal =

√∑N
i (Ii − I)2

N − 1
(3)

The behavior of the standard deviation of background σBackground is found to differ

from the standard deviation of the measured counts σCounts and does not follow Equa-

tion 2. As a result the standard deviations add in quadrature (Hughes & Hase, 2010).

Using the average σTotal in the ROI, the standard deviation of measured counts σCounts

can be determined. In order to extract the behavior of σCounts from σTotal Equation 4

is used. Here, σBackground is the standard deviation of the background and IBackground

is the measured counts of the background. σBackground and IBackground were experimen-

tally determined to be an approximately uniform values of 25 and 4900 respectively.

σCounts =
√
σ2
Total − σ2

Background (4)

After calculating σCounts the Poisson-like function defined in Equation 2 is fit to the

experimental values where a β value of 2.83 is determined.
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Fig. 2. Single pixel standard deviation of measured counts σCounts for the PE-1621
detector. The standard deviation of measured counts σCounts is found to follow
Poisson-like statistics σCounts =

√
βNCounts where, β = 2.83. An experimentally

determined background of 4900 counts is subtracted from all measured intensities.
Additionally, an experimentally determined standard deviation of the background
σBackground of 25 is subtracted from the all calculated σTotal values in quadrature
in order to calculate σCounts. The detector is set to a gain of 0.25pF for all mea-
surements.

Similarly the statistical behavior of the ensemble can be explored. The ensemble

consists of binning snapshots and pixels, each type of binning is investigated indi-

vidually. The standard deviation of the ensemble σMean Total is similarly calculated

in a ROI using Equation 3 after the binning has been performed. The average of

σMean Total in the ROI is found to have the ensemble behavior defined in Equation 5

and is presented in Figures 3 and 4.

σMean Total =
σTotal√

NSnapshots

√
NPixels

(5)
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Fig. 3. Ensemble standard deviation for binned snapshots σMean Total using the PE-
1621 detector. The standard deviation after snapshot binning is found to follow the
ensemble behavior σMean Total =

σTotal√
NSnaphots

. The detector is set to a gain of 0.25pF

for all measurements.

Fig. 4. Ensemble standard deviation for binned pixels σMean Total using the PE-1621
detector. The standard deviation after pixel binning is found to follow the ensemble
behavior σMean Total = σTotal√

NPixels
. The detector is set to a gain of 0.25pF for all

measurements.

Further, the measured background signal is statistically independent of the back-

ground signal in the measured active image. As a result subtraction of the background
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from the active image increases the standard deviation of the background σBackground

in quadrature. This effect occurs for subtraction of air scattering and capillary signals

from the active measurement. Due to the subtraction of these signals σBackground is

experimentally determined to be approximately 53 for 1s exposures.

3. Modification Functions

The inclined geometry provides access to a broader range in Q. The additionally

probed reciprocal-space helps to preserve real-space resolution by allowing the reduced

total scattering structure function F (Q) defined in Equation 6 to damped naturally

due to the Debye-Waller factor.

F (Q) = Q [S (Q)− 1] (6)

Natural dampening of the F (Q) does not require the full extent of damping pro-

duced by modification functions M(Q) such as the Lorch function and modified ver-

sions (Lorch, 1969). Modification functions are applied to the reduced total scattering

structure function by multiplication where F ′(Q) = F (Q)M(Q). The modification

functions begin at unity and decay to zero at the maximum value of Q in order to

reduce the extent of termination ripples appearing in the G(r) (Soper & Barney, 2012).

The modification functions aggressively dampen the envelope of the F (Q), which is

ideal for smaller maximum values of measured Q where the F (Q) maintains signifi-

cant signal. However, when patterns are measured out to a larger range in Q as in

the inclined geometry, the F (Q) decays to less amplitude and termination ripples are

naturally reduced. As a result, the extent of damping applied by the modification func-

tions can be decreased, while still achieving the same magnitude of termination ripples

as generated in the traditional geometry. A modified version of the Lorch function is

defined in Equation 7 in order to reach this effect. The Lorch function is modified by
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taking the function to the power factor of ζ. From this modification, the decay from

unity to zero is preserved over the Q-range. The extent of damping to the F (Q)’s

envelope can be reduced by implementing values of ζ < 1, preserving the natural

real-space resolution.

M(Q) =

[
sin

(
Qπ

Qmax

)/(
Qπ

Qmax

)]ζ
(7)

Fig. 5. Comparison of the reduced total scattering structure function F (Q) in inclined
and traditional geometries for powdered nickel using a) no modification function
b) a Lorch power factor of ζ = 0.6 in the traditional geometry and ζ = 0.25 in
the inclined geometry. The inset shows the modification functions M(Q) applied to
each geometry’s F (Q).
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