

Volume 56 (2023)

Supporting information for article:

Modeling the structural disorder in trigonal-prismatic coordinated transition metal dichalcogenides

Federica Ursi, Simone Virga, Candida Pipitone, Alessandra Sanson, Alessandro Longo, Francesco Giannici and Antonino Martorana

Supporting information

	Γ	AbC	BcB	CaC	AcA	BaB	CbC	AbC	BcA	CaB	AcB	ВаС	CbA	
	AbC	0	α	β	0	γ	δ	0	η	η	0	η	η	
	ВсВ	β	0	α	δ	0	γ	η	0	η	η	0	η	
	СаС	α	β	0	γ	δ	0	η	η	0	η	η	0	
	AcA	0	δ	γ	0	β	α	0	η	η	0	η	η	
	ВаВ	γ	0	δ	α	0	β	η	0	η	η	0	η	
$\mathbf{P} =$	CbC	δ	γ	0	β	α	0	η	η	0	η	η	0	(S1)
	AbC	ε	ε	0	ε	ε	0	$\boldsymbol{\phi}$	χ	0	ψ	ω	0	
	BcA	0	ε	ε	0	ε	ε	0	$\boldsymbol{\phi}$	χ	0	ψ	ω	
	СаВ	ε	0	ε	ε	0	ε	χ	0	ϕ	ω	0	ψ	
	AcB	ε	0	ε	ε	0	ε	ψ	0	ω	ϕ	0	χ	
	ВаС	ε	ε	0	ε	ε	0	ω	ψ	0	χ	ϕ	0	
	CbA	0	ε	ε	0	ε	ε	0	ω	ψ	0	χ	ϕ]	

Figure S1 Fitting of the prismatic-octahedral model to the XRD data of the exfoliated-restacked MoS₂ sample. Experimental, black; calculated, red; background, yellow; model, blue; residual, brown.

Figure S2 Simulation of the prismatic-octahedral model to the XRD data of the exfoliated-restacked MoS₂ sample. Experimental, black; calculated, red; background, yellow; model, blue; residual, brown. The correlated interatomic distance uncertainty is eliminated.

Figure S2 shows that the presence of two different S-Mo-S thicknesses is not the main source of interatomic distance uncertainty with consequent blurring of the high-angle lines. This evidence was confirmed by simulations involving a small (f_P =0.5) frequency of prismatic layers and a quite large difference between prismatic and octahedral thicknesses ($|\mathbf{c}_P|$ =6.19 Å and $|\mathbf{c}_O|$ =6.23 Å): figure S3 shows that the components of the total XRD pattern corresponding to different height jumps between m-neighbouring sandwiches (that is, the value of the integer m in the interatomic distance vector $\mathbf{t}_{klm} = k\mathbf{a} + l\mathbf{b} + m\mathbf{c}$) remain sharp despite the large difference between the prismatic and octahedral thicknesses if the interatomic distance correlated uncertainty is not considered (blue traces); on the contrary, if this source of disorder is considered (red traces), the blurring of the intensity components increases as a function of the scattering angle and of the distance (*i.e.* at increasing m) between the S-Mo-S sandwiches. On the contrary, the effect of blurring the high-angle lines determined by the presence of two different thicknesses decreases at increasing m, because at high m values the spacing between m-

neighbouring layers tends asymptotically to the unique $m|\bar{\mathbf{c}}| = m|f_P\mathbf{c}_P + (1 - f_P)\mathbf{c}_O|$ value, no matter of the terminal layers.

Figure S3 Components of the total XRD pattern corresponding to different height jumps (see text) between S-Mo-S sandwiches. Blue traces, no interatomic distance correlated uncertainty; red traces, with correlated uncertainty. For m=0 (self-scattering of the S-Mo-S units) the distinct contributions of prismatic and octahedral sandwiches are drawn.