J. Appl. Cryst. (2023). 56, https://doi.org/10.1107/S1600576723001577 Supporting information

2 JOURNAL OF
= APPLIED
2 CRYSTALLOGRAPHY

Volume 56 (2023)

Supporting information for article:

FAIR and scalable management of small-angle X-ray scattering data

Torsten Giess, Selina Itzigehl, Jan Range, Richard Schomig, Johanna R.
Bruckner and Jirgen Pleiss

1. Supporting tables

Python package requirements: conda environment.yml files

The popular scientific computing package and environment manager conda was used in this
work through Miniconda3, mainly for managing virtual environments. Only Python and
Jupyter-related packages were installed with conda, all other packages and libraries were
installed using pip. The “minimal” environment files only contain explicitly installed packages
with their respective version for platform-agnostic environment creation. The “macos” files
contain explicitly installed packages and all their dependencies with versions and exact build,

the latter being MacOS/ARM64-specific, however.

Table S1. Environments used for this work

Environment type | Environment name File name

base base base minimal.yaml

base macos.yaml

production fairsaxs fairsaxs_minimal.yaml

fairsaxs_macos.yaml

Mapping of PDH to AnIML

From the XML metadata footer of the PDH files, only the column and parameter elements as

well as their children are currently mapped to AnIML, as these nodes contain the most essential

information (Table S2).

Table S2. Mapping of PDH column, parameter, and value elements to AnIML Series, Unit,

Category and Parameter elements.

PDH

AnIML

<column key=".”>

<Series name=”.” seriesID="..” SeriesType=".” ..>

<value key="unit”>..</value>

<Unit label="..” quantity="quantity”>

<value <SIUnit factor="..” exponent=".”" offset=".">
key="quantity”’>..</value> ..</SIUnit>
</Unit>
</column> </Series>

<parameter key=".”>

<Category name=".">

<value key="name”>..</value>

<Parameter name="name” parameterType="String”>

..</Parameter>

<value key="value”>..</value>

<Parameter name="value” parameterType="Float32”>

..</Parameter>

<value key="stddev”>..</value>

<Parameter name="stddev” parameterType="Float32”>

..</Parameter>

<value key="unit”>..</value>

<Parameter name="unit” parameterType="String”>

..</Parameter>

<value key="quantity”>..</value>

<Parameter name="quantity” parameterType="String”>

..</Parameter>

</parameter>

</Category>

Structure of the DaRUS metadata blocks
On DaRUS, selected fields from the Citation Metadata, Process Metadata, and Engineering
Metadata blocks were used in this work (Table S3).

Table S3. Implemented DaRUS metadata blocks and their fields used in this work.

Metadata block Fields used

Title
Author

Contact

Description

Citation Metadata Subject

Keyword

Topic Classification

Grant Information

Project

Processing Methods

Method Parameters
Process Metadata

Software

Instruments

Data Generation

Engineering Metadata Measured Variables

Controlled Variables

2. Supporting figures

Output of fit parameters from Origin

The TXT-formatted output from Origin provides information on the parameters of the
Lorentzian fits on SAXS peaks (Fig. S1). The first column contains the intensity / as the
dependent variable. The second column gives the parameter names followed by the fitted value
and its standard deviation. The #-value is the ratio of the fitted value and its standard deviation.
The Prob>|t|-value is the probability of the z-test and therefore allows inference to the
significance of each parameter. Lastly, the dependency which is computed from the variance-
covariance matrix further indicates the significance of each parameter. In the analysis and

visualization toolkit merely the peak center values x. were used for further calculations.

value Std dev t-value prob.>|t| dependency
I y0O 0.00964 0.00958 1.00693 0.3475 0.97174
I xc 1.96602 0.00212 927.72171 4.46519E-19 1.56017E-4
I w 0.03667 0.01759 2.08479 0.07555 0.94112
I A 0.00184 0.00128 1.43333 0.19488 0.98618

Figure S1. Section from exemplary TXT file with fitting data obtained from Lorentzian fit in
Origin.

Indexation of the cubic LL.C phase

The multiple scattering maxima of the cubic LLC phase may be assigned to various Miller’
indices (/k/) resulting in different possible space groups. The best fit was obtained for the body-
centered space group Ia3d, as shown in Fig. S2. The linear regression between the measured
values of d! and the theoretically calculated values of the assigned Miller’s indices reveals an

excellent agreement with R* = 0.9997.

0.8
461 1)

0.7

4321)

0.4 1 4310)
£220) y=
. 0.1192 x + 0.01644

0.3 - é211) RZ = 0.9997

2.0 2.5 3.0 35 4.0 4.5 5.0 5.5 6.0 6.5

VhZ2+ k24 /2

Figure S2. Plot of reciprocal lattice plane distance d' vs. square root of the sum of quadratic
Miller’s indices (/kl) for confirmation of the Ia3d space group of the cubic LLC phase.

3. Guide to the Notebooks
Guide to the Notebooks

Module 1: PDH to AnIML converter

Following the preparational steps and creation of an AnIML object, available PDH files for
conversion are called via a respective directory (red box).

: | pdh_dir = PDHReader(path_to_datasets /["raw/OTAC_measurement_data/OTAC_@@ewtp_T@25")
dict_of files = pdh_dir. v
index, file dict_of files. ():
(f"{index}: {file}")

17:08:33 - modules.pdhreader - DEBUG: Constructor called, 'PDHReader'@@xlc6b9elaf2@ initialised.
: OTAC_@elwtp_T825[5]
: OTAC_@@Swtp_T825[5]
: OTAC_@1@wtp_T825[5]
OTAC_@28wtp_Te25[5]
OTAC_@3ewtp_T@25[5]
OTAC_848wtp_Te25[5]
OTAC_@5ewtp_Te25[5]
OTAC_@68wtp_Te25[5]
: OTAC_@61wtp_T825[5]
: OTAC_B862wtp_T0825[5]
: OTAC_@63wtp_T@25[5]
: OTAC_@64wtp_T@25[5]
: OTAC_@65wtp_T@25[5]
: OTAC_@66wtp_T@25[5]
: OTAC_@67wtp_T@25[5]
: OTAC_@68wtp_T@25[5]
: OTAC_@69wtp_T@25[5]
: OTAC_@76wtp_T@25[5]
: OTAC_@8ewtp_T@25[5]
: OTAC_@9@wtp_T@25[5]
: OTAC_@91wtp_T@25[5]

a. ATAC 0O e TA2CTCT

2]
1
2
3:
4:
5:
[H
78
8

As additional automation is indeed possible, the specification to a particular case as well as
susceptability to error increases dramatically. Therefore, the AnIML object is built one dataset
at the time. In the next step, one of the files from the previously printed dict of filesis
chosen by its index to proceed with.

3. Select the desired file either by name or by list index and extract the data as pandas dataframe:

: | pdh_file = dict_of file{[5]
raw_dataframe = pdh_dir. (pdh_file)
raw_metadata = pdh_dir. (pdh_file)
(raw_dataframe)

17:09:29 - modules.pdhreader - DEBUG: Data extracted from 'OTAC_e4ewtp _Te25[5]'.
17:09:29 - modules.pdhreader - DEBUG: Metadata extracted from 'OTAC_@4ewtp_Te25[5]'.
17:09:29 - modules.pdhreader - DEBUG: Metadata casted to 'etree.ElementTree’.
scattering_vector counts_per_area

0.114488 3.473180e-16

0.121128 4.665868e-09

0.127769 2.202300e-08

©.134409 1.146515e-89

0.141050 1.624531e-09

.587863e-084
.467263e-084

1e48 7.431255 6

1849 7.437650 2

1e5e 7.444044 6.541748e-04
1
1

1e51 7.45e438
1e52 7.456831

.549244e-05
.350767e-05

[1853 rows x 2 columns]

With the data at hand, the elements of the AnIML object are built up from bottom to top. Firstly,
the experiment and sample are labelled with name (experiment name) and ID

(Sample id). These names can be assigned to the respective variables as a string containing
text as well as created from a file name (here pdh file). This, however, requires consistent
naming of all measurement files.

4. Start building up the AnIML document. Create a new sample with an ID and name and add it to the AnIML object:

experiment_name = f"{pdh_file[:4]}/water: x = {pdh_file[5:8]} wt%; T = {pdh_file[-5:-3]} C"
(experiment_name)

OTAC/water: x = 040 wt%; T
new_sample = Sample(
pdh_file. 5

name=experiment_name

{new_sample)

Sample(name="0OTAC/water: x = 048 wt¥%; T = 25 C', id='OTAC_@4ewtp_Te25', properties=[])

animl_doc. (new_sample)

Next, the experiment step object is created by assigning as name and an ID, similarly to the
previous step (Case a). Alternatively, an existing experiment step within an AnIML object can
be chosen (Case b). Additionally, a sample reference is added to the experiment step
providing the sample object, its role and purpose (Step 6)

5. Create or access an experiment step for the AnIML object, providing it with a name and an ID:

» Case a) Create a new experiment step object:

experiment_step = ExperimentStep(
name=f"Sample data for {experiment_name}",
experiment_step_id=pdh_file. %", "p")[:-3]

(experiment_step)

ExperimentStep(name="'Sample data for OTAC/water: x = 040 wt%; T = 25 C', experiment_step_id='OTAC_@4@wtp_T025', inf
rastructure=Infrastructure(sample_references=SampleReferenceSet(sample_references=[])), method=Method(methods=[]),
result=Result(results=[]))

» Case b) Access an existing experiment step within an AnIML document:

: |available_experiment_steps = experiment_step = animl_doc.
([step. step available_experiment_steps])

: | experiment_step = available_experiment_steps[@]

Step 7 offers the opportunity to add authors, device and software information to the AnIML
object as instrument parameters.

In the next step, actual measurement data is added as a series for every dimension. For that
purpose, a Category is created or an existing one is accessed. The units of the columns are
extracted from the metadata of the measurement files and the actual values are stored in
IndividualValueSets. Another SeriesSet is created holding the measurement data
and associated information which is added to the Category. The Category, in turn, is then
added to the experiment step. The experiment step which now contains all the
information of one measurement is finally added to the AnIML object.

[24]: |g_values = IndividualValueSet(

raw_dataframe["scattering_vector"].

)

q = Series(
name="q",

£"{pdh_file. (5,

unit=q_unit,
individual_value_set=q_values,
data_type="float32",
dependency="dependent”,
plot_scale="linear"

)

i_values = IndividualValueSet(
raw_dataframe[“counts_per_area"].

)

i = Series(
name="I",

f"{pdh_file. ("%, 'p')[:-31} 1",

unit=i_unit,
individual_value_set=i_values,
data_type="float32",
dependency="dependent”,
plot_scale="linear"

9. Create one or more sets for series belonging together, provide the set with a name, add it to the category object, and add it
to the experiment step object:

: new_set = SeriesSet(
name=f"Small angle X-ray scattering”,
series=[q, i]

)
: category. (new_set)

: experiment_step. (category)

10. Finally, add the now fully built experiment step object to the AnIML object:

: animl_doc. (experiment_step)

In a last step, an XML-formatted string is created from the AnIML object and serialized to the
given AnIML document.

To add further datasets to the AnIML document, an existing document is called (Step 1, Case
b), following steps are carried out as before. The finished AnIML document now contains all
information needed to recreate a similar experiment as well as raw data of the measurements.
Exemplary excerpts are shown in the following.

In the beginning of the AnIML document an overview over all contained sample data is given.
For each dataset the instrument information is given followed by the result which contains two
series holding the scattering vector (in nm™) and corresponding intensity (in counts per area).

name
name samplelID
name sampleID
name samplelD
name sampleID
name sampleID
name sampleID
name sampleID

name samplelD

parameter|)

parameter

param

paramet
parameter

parameter

Module 2: Analysis and visualization toolkit

Submodule 2.1: Lorentzian fit with Origin

Lorentzian fits of the measured peaks are carried out using an “external” software (Origin). For
this purpose, the data stored in the AnIML document is converted to a TSV file.

Submodule 2.2: Analysis

In order to determine the lyotropic liquid crystalline (LLC) phase and the corresponding lattice
parameter a, several steps are necessary. To be able to add the analysis data to the AnIML
document afterwards, a respective experiment step must be accessed and added a new
Category which will hold the analyses. The next step involves the import of Lorentzian fit
data obtained from Origin (or any other analysis software). The available files are stored in a
data frame from which a file can be chosen by its list index later.

Firstly, the literature g-values (in nm™) are calculated from given d-values (given in A).
Measured g-values are corrected with the slope and intercept obtained from plotting literature
versus measured g-values of the cholesteryl palmitate measurement (list index 0). The file to
complete the analysis with is chosen via dict of df[available txt files[list
index] .name] .

Calculate the scattering vectors for calibration from literature lattice plane distances (given in Angstrom).

: | prepare_standard = PrepareStandard(SAXSStandards.)
q_cholpal literature = prepare_standard.
{q_cholpal literature)

Calibrate the peak centers of a measurement (element from available txt files) with the calibration line. Then calculate the lattice plane ratio

from g_corrected :

: |slope_and intercept = prepare standard.
q_std _meas=dict _of df[available txt files[®]. 1["value"].

(slope_and intercept)

: | 11c_analyzer = LLCAnalyzer()

1lc_analyzer.
slope=slope_and intercept[e],
q_meas=dict_of_df[available_txt files[@]. 1["value"]. O,
intercept=slope_and intercept[1]

)

q_corrected = 1llc_analyzer.
{q_corrected)

The calculated and corrected g-values of the scattering maxima are subsequently added to the
AnIML document within a Category.

Add corrected g values to the AnIML document:

subcategory = Category(name="g_corrected™)

i, g (q_corrected):

new_parameter = Parameter(
name=f"q_corrected of peak {i+1}",
parameter_type=infer_ type(q),
value=q

)

subcategory. (new_parameter)

new_category. (subcategory)

Next, the lattice plane distance is calculated (in nm) from the corrected g-values and
subsequently added to the AnIML document in another Category. The lattice plane ratio d,
as well, is calculated and added to the AnIML document.

Calculate lattice plance distances d and their ratios from the corrected g values:

[1: 1lc_analyzer. (0]
d_measured = 1lc_analyzer.
(d_measured)
d_ratio = 1lc_analyzer.
(d_ratio)

With this information, the LLC phase can now be determined. As certain phases exhibit
characteristic lattice plane ratios they are checked against given conditions. If a phase is
determined, the corresponding lattice constant a is calculated accordingly. If the phase is
indeterminate further analysis by visualization can be carried out (see Submodule 3.2:
Diffractograms).

Determine the LLC phase from the lattice plane ratio and calculate the respective lattice parameter a:

: phase = llc_analyzer.)
(phase)

: | phase. (d_meas=d_measured)
phase_information = phase.
(phase_information)

If a cubic phase is interpreted from the diffractograms (or the above script) the space group can
be specified by comparing measured reciprocal d"'-values versus VA2 + k2 + [2. The closer the
R?-value of the resulting plot is to unity; the more likely the assigned Miller indices and
corresponding space group are. With another chapter in this notebook, the space group
specifying the cubic phase can be determined by creating such a plot by input of different Miller
indices. Obtained results can afterwards be added to the AnIML file.

Submodule 2.2: Diffractograms

In a first part of this Notebook, data visualization of two parameters is possible with data from
the AnIML document. Therefore, a respective AnIML document is chosen by its directory, the
measurement data of one or more samples selectable through their IDs in files to plot.
With the data from files to plot, two-parameter plots are created for each dataset.

Import of data from AniML

Export g and I to TSV for plotting:
path_to_AnIML_file = path_to_datasets / f"processed/fairsaxs_228512.animl"

path_to_AnIML_file. ("r™)
xml_string = f. 0
animl_doc = AnIMLDocument. (xml_string)

reader = SeriesReader(animl_doc)

17:49:04 - modules.seriesreader - DEBUG: Constructor called, 'SeriesReader'@@x2410f122e3@ initialised.
17:49:04 - modules.seriesreader - DEBUG: Destructor called, 'SeriesReader'@@x241@ac238e@ deleted.

list_of_IDs = reader. QO
(list_of_IDs)

['CholPal_20228214', 'OTAB_@lewtp_Te25', 'OTAB_@2@wtp_Te25', 'OTAB_83@wtp_Te25', 'OTAB_e4@wtp_Te2s', 'OTAB_@Sewtp_T
825', 'OTAB_@6lwtp_Te25', 'OTAB_062wtp _Te25', 'OTAB_O@63wtp_T25', 'OTAB_864wtp_TO25', 'OTAB_B65wtp_Te25', 'OTAB_066

[49]: files_to_plot = [file index, file (list_of_IDs) file. ("OTAB")]
(files_to_plot)

reader. (files_to_plot)
dataframe = reader. Q)

['OTAB_@lewtp_Te25', 'OTAB @2@wtp_T@25', 'OTAB_@3@wtp_Te25', 'OTAB_@4ewtp _Te25', 'OTAB_@5@wtp_T@25', 'OTAB_@6lwtp_T
025", 'OTAB_@62wtp_Te25', 'OTAB_863wtp_Te25', 'OTAB_@64wtp_Te25', 'OTAB_@65wtp_Te25', 'OTAB_@66wtp_Te25', 'OTAB_@67
wtp_Te25', 'OTAB_@68wtp_T@25', 'OTAB_@6Swtp _Te25', 'OTAB_@7ewtp _Te25', 'OTAB_@7lwtp_Te25', 'OTAB_@73wtp_Te25', 'OTA
B_@74wtp_T@25', 'OTAB_@75wtp_Te25', 'OTAB_878wtp_Te25', 'OTAB_@79wtp_T@25', 'OTAB_88ewtp_Te25', 'OTAB_@9@wtp_Te25',
"OTAB_1@@wtp_Te25', 'OTAB_@78wtp_Tes8', 'OTAB_878wtp_T@6@', 'OTAB_e82wtp_Te25', 'OTAB_@93wtp_Te25', 'OTAB_l@@wtp_Te
95']

path_to_TSV_file = path_to_datasets / f"processed/fairsaxs_228512.tsv"

dataframe. (
path_or_buf=path_to_TSV_file,
sep="\t",
index

index (8, (len(dataframe.)),2):
data = pd. (path_to_Tsv_file,
usecols = [index, (index+1)],
names ["gq", "I"],
header >
engine = "python"

)

_ = data[data["q"]]
plot_data = _[_["q"]]

scattering_vector = plot_data["q"]
counts_per_area = plot_data["I"]

plt. (scattering_vector,
counts_per_area,
linestyle n-ry
marker
label = ((dataframe.)[index])[@:-2],
color = "black™)
(e.7)

("q / $\mathrm{nm}~{-1}$")

("log")

("log(1 / a.u.)")

(frameon)

O

wom
3

Two-parameter plots showing two or more diffractograms in one graph are possible, too. These
plots are created similarly from the selected datain files to plot. Additionally, a phase
description can be added to each dataset by specifying it in the list phase. This list should
contain and equal number of entries as files to plot.

Furthermore, plots visualizing three parameters can be created from raw datasets. The files
contained in a selected folder are shown as meas files. Corresponding mass fractions are
added to the list mass fractions. A colormap is chosen according to the number
(n_meas) of datasets. Each measurement is then added to the figure, as shown by the output
of the cell. The figure can be created as is or adapted to best meet individual requirements
(e.g. change axis label, ticks, scale, etc.)

For mass fration dependency, go to the measurement folder (datasets/raw/) containing the data for visualization and create a list of files:
3]: path_to T_series = path_to_datasets / "raw/OTAB_measurement_data/OTAB_0@ewtp_T025"

: files = path_to T _series. ("*.pdh")
meas_files [file file (files) file. O]
meas_files. (reverse)

([measurement. measurement meas_files])

["OTAB_1@@wtp T@25[5]", 'OTAB_@9ewtp T@25[5]", 'OTAB @8ewtp Te25[5]', 'OTAB 079wtp Te25[5]', 'OTAB_@78wtp Te25[5]", 'OTAB B75wtp Te2s
[5]', 'OTAB @74wtp Te25[5]', 'OTAB_@73wtp_Te25[5]", 'OTAB @71lwtp T@25[5]", 'OTAB 87ewtp Te25[5]', 'OTAB @69wtp Te25[5]', 'OTAB_o68wtp
_T025[5]", 'OTAB_B67wtp_T@25[5]", 'OTAB_@66wtp_T@25[5]", 'OTAB_G65wtp_Te25[5]', 'OTAB_86Awtp_TO25[5]", 'OTAB_863wtp_T25[5]", 'OTAB_@
62wtp_Te25[5]", 'OTAB @6lwtp T@25[5]', 'OTAB @eowtp Te25[5]", 'OTAB @sewtp Te2s[5]', 'OTAB @4ewtp_Te2s[5]", 'OTAB @3ewtp T@25[5]', 'O
TAB_@20wtp_Te25[5]", 'OTAB_elewtp T@25[5]"]

Add the measured mass fractions to mass_fractions and instantiate the inferno colormap by storing the number of measurements in n_meas .

5]: |mass_fractions = [10, 20, 3@, 40, 50, 6@, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 78, 79, 80, 99, 160]
mass_fractions. (reverse)

6]: | cmap = mpl.
n_meas (meas_files)
(n_meas)

Instantiate the figure and add all measurements to it:

tig = plt. 0
plt. (projection="3d")

(10, 10)
("$q% / $\mathrm{nm}~{-1}$")
([0, 1, 2, 3, 4, 5, 6, 7])
("x [/ wtik")
(e, 160)
("$13 / $a.u.3")

measurement (len(mass_fractions)):
(f"Adding {meas_files[measurement]. } to figure."}

data = pd.
meas_files[measurement],
delimiter=" "
usecols=[@, 1],
names=["q", "I"],
header=5,

data_points (len(scattering vector)):
mass_fraction. (data_points, mass_fractions[measurement])

(
scattering_vector,
mass_fraction,
counts_per_area,
linestyle="-",
marker=",",
color=cmap{measurement {n_meas)),

plt. 0

Adding OTAB_l1eewtp Te25[5] to figure.
Adding OTAB_e@9ewtp _Te25[5] to figure.
Adding OTAB_esewtp _Te25[5] to figure.
Adding OTAB_e79wtp Te25[5] to figure.
Adding OTAB_e78wtp Te25[5] to figure.
Adding OTAB_@75wtp T@25[5] to figure.
Adding OTAB @74wtp T025[5] to figure.

T 120
—— (OTAB_069wtp_T025 ‘
100
=
b
3
L 10° 4
3
K-}
107
1O7; 1 T T
1] 1 2 3 4 5 6 7

Similar graphs can be created for temperature dependency. The procedure is therefore similar
to the previously described. A folder holding the desired measurement series is selected as well
as the temperatures and colormap. The figure is instantiated and all graphs added consecutively.

Submodule 2.2: Phase diagrams

After all phase transitions are determined, they can be added to the lists mass fraction
and temperature to create a “skeleton” phase diagram.

Phasediagrams with Python

Define the name of your sample which will be added to the x-axis label. To mass_fraction add the mass fractions, to temperature the
corresponding temperatures of phase transitions that were found while inspecting various diffractograms.

: |name = "0% 8$TAB"
: mass_fraction = [>
: | temperature = [12, 7,

Create the "skeleton plot™:

: |plt. (mass_fraction,
temperature,
marker='0",
marker:
mfc="N
linestyle
color="blac

)
(F"w({name})")
(2,

100

T/°C

20

0

Mod
With

(] (s]

o
o

00 01 02 03 04 05 06 0.7 08 09 10
w(OsTAB)

ule 3: OMEX format and dataverse handler
this Notebook, the metadata block as well as an OMEX or ZIP archive is created to upload

to DaRUS. First, after the preparational steps, a respective AnIML document is accessed and

read,

as well as necessary pyDaRUS objects created.

1. Give path to AnIML document to be uploaded to DaRUS in form of a pathlib Path:

: |path_to AnIML_file = path_to datasets / f"processed/fairsaxs_220512.animl"

2. Read document as string and create AnIML object from it:

path_to AnIML_file. 'r") iB
xml_string = f. O
animl doc = AnIMLDocument. (xml_string)

3. Create the necessary pyDaRUS objects to be filled with metadata from the AnIML document. The title of the dataset is also provided here as an

argument to the citation block:

: |citation block = citation()

process_block Process()
engineering block = EngMeta()

In a next step, the citation block object is filled by adding various information including the

title,
there

authors, and keywords among others. This information is added manually and can
fore be manipulated accordingly.

4. Add general citation information to the citation block object that cannot be inferred from the AnIML document itself:

: | citation_block. “FA nd scalable ma nt mall-angle X-ray

: |citation_block. n", "Uniy f stu IdentifierScheme.
citation_block. " ‘ N Stut t", IdentifierScheme.
citation block. Ja niy) Stu 5
citation block. 3 P anna R.™, " Vers of S t", IdentifierScheme.
citation_block. i University of Stuttgart entifierScheme. N

: |citation_block. Ju / of Stuttgart”, "j plei th.uni-stuttg

: | citation_block. (f"This dataset contains th IML document, as well as all additonal files re

: |citation_block. [SubjectEnum. » SubjectEnum. , SubjectEnum.

: |citation_block.
term="AnT
vocabulary
vocabulary

citation block.
term="Proj
vocabulary
vocabulary

citation block.
term="Surfactants"”,

For the process block object, information about the experiments are gathered from the AnIML
document. The experiment, its corresponding parameters, units and methods are accessed and
added to the block object. Furthermore, the process block object is filled with information about
the measurements including the instrument and the software used to gather the data as well as
the data itself.

6. Retrieve experiment parameters, remove duplicate entries, and transform the resulting list into a comma-separated string:

experiment_step animl_doc.
category experiment_step.
category. “Analyses”:

series_set category.
unique_parameters = {series. 5 : series. 5 series series_set.

: method parameter_labels = ", ". (unique_parameters. (9}

7. Add experiment name and its relevant parameters to the process metadata block object:

: process_block. (
name=method_name,
parameters=method parameter_labels,

8. Create dictionaries of the relevant parameters' names and units:

: | parameter_names = unique_parameters
parameter_names["T"] = "temperature”
parameter_names["w"] = "mass fraction”

: parameter_units = {
= g

9. Add the full parameter information to the process metadata block object:

[1: parameter unique_parameters. ():
process_block. (
name=parameter_names[parameter],
symbol=parameter,
unit=parameter_units[parameter]

Lastly, the engineering block object is holding information about the variables. The DaRUS
dataset object is then created by adding all previously created block objects.

16. Create the DaRUS dataset object and add the different block objects to it:

[1: |dataset. (citation_block)

dataset. (process_block)
dataset. (engineering_block)

In order to create an archive following the OMEX standard, the archive and VCard objects
need to be created first. As currently undefinied Internet Media Types, AnIML and PDH are
created as application/x types and added to the known formats of python-libcombine before
continuing to add the AnIML document to the archive object.

1. Create the archive object and VCard objects:

[1: |larchive = CombineArchive()

[1: |1list_of vcards = []
creator citation block.
new_VCard = VCard()
new vcard. creator.
new_VCard. creator.
new_VCard. creator.
list_of vCards. (new_vcCard)

3. Add the AnIML document to the archive object:

: local_path (path_to_AnIML_file)
archive path = f"./{str(path_to AnIML file. i
format_check = KnownFormats. ("animl™)
is master

: | _void = archive. (local_path, archive path, format_check, is master)
void

In the following steps, a description object containing several descriptions, dates, and author
information is created. This is then added to the archive object. Optionally, additional files (e.g.,
PDH, TSV, PNG) can be added to the archive object, as well. Finally, the archive object is
serialized to OMEX or ZIP format.

11. Serialize the archive object to OMEX or ZIP format:

[1: |_void = archive. (str(path_to_datasets / f"processed/fairsaxs_220512.zip"))
void

The created OMEX archive can then be uploaded to DaRUS. The Notebook additionally
enables downloading and editing of DaRUS datasets.

Upload to DaRUS

The upload of a draft to a DaRUS repository requires an API token with appropriate permissions. The URL of the Dataverse, as well as the API token are
inferred from the environment variables.

1. Add unpacked archive to dataset object for upload to DaRUS:

: dataset. (dv_path="fairsaxs 228502.zip", local path: {path_to datasets / "processed/fairsaxs 220502.zip"))

2. Upload to DaRUS by stating the target repository and the file or directory to be uploaded and print the resulting DOI:

i p_id = dataset. ("sfb1333-giesselmann-bruckner™)
(p_id)

