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1 Validation calculation

1.1 Intensity scaling

For the comparison of Euphonic [5] with Ab2tds [10] and OClimax [2], a scaling factor was calculated for
each intensity map by averaging the ratio of the intensities in each bin with those in the corresponding bins
in the Euphonic intensity map. Data points at energies less than 1 meV were first removed to eliminate
acoustic mode data close to the gamma points (where the phonon intensity diverges) and afterwards any
values that were smaller than 10−4 of the maximum intensity in the remaining portion of the map were
removed to avoid potential numerical instabilities arising in the computation of very small intensities. The
Ab2tds or OClimax intensity map was then normalised by the resulting scaling factor and the mean relative
percentage difference (MRPD) was computed for the data that passed the same filtering criteria.

1.2 Symmetrisation of the Debye–Waller exponent

In all cases the grid used to calculate the Debye–Waller factor was a fully unfolded Monkhorst–Pack grid,
i.e. the set of points was not symmetry reduced. It was found that using a symmetry reduced grid produces
slightly different values for the Debye–Waller exponent Wκ than the full grid unless the Debye–Waller
exponent is explicitly symmetrised so that it is invariant under symmetry operations. This would have made
comparison between the different codes difficult as Ab2tds and OClimax appear to handle symmetry reduced
grids differently, increasing the MRPDs depending on which grid type and symmetrisation settings are used.
(Euphonic has the option to switch on or off Debye–Waller symmetrisation). An example of the MRPD
increase for Ab2tds is shown in Table 1 for the case where a symmetry reduced grid was used as input and
Debye–Waller symmetrisation was disabled in Euphonic. The MRPDs are higher than in the corresponding
Table 3 in the main text, where a full grid was used. If the Debye–Waller symmetrisation is enabled again
in Euphonic when using the reduced grid, the low MRPDs seen in Table 3 in the main text are recovered.

Table 1: Mean relative percentage difference between Euphonic and Ab2tds as in Table 3 in the main
text, but using a symmetry reduced Monkhorst–Pack grid to calculate the Debye–Waller factor, and with
Debye–Waller symmetrisation turned off in Euphonic

Material Q-direction
Mean Relative Percentage Difference

Euphonic Interpolation CASTEP Interpolation

Nb
[h, h, 0] 0.21 0.21

[2 − k, k, 0] 0.25 0.25

Quartz
[h,−4, 0] 1.89 1.89
[−3, 0,−l] 0.27 0.23

La2Zr2O7
[−5, 7,−l] 1.61 1.61
[h,−h,−2] 1.15 1.15

2 Force constants calculation details

The input and output files for each of the following calculations are available at https://doi.org/10.5281/
zenodo.6620084 [4].

2.1 La2Zr2O7

Calculations of the force constants were performed with DFT as implemented in CASTEP 17.21 [3]. Default
ultrasoft pseudopotentials were used and the results presented used the Local Density Approximation (LDA)
to exchange and correlation. A plane wave cut-off of 600 eV with electronic k-point sampling on a Monkhorst–
Pack mesh of 4 × 4 × 4 within the primitive cell was found to reduce the error in the forces to below 0.005
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eV Å−1. The structure and lattice parameters were relaxed with the quasi-Newton method [1] corrected for
the finite basis set [6]. Force constants were calculated using the finite displacement/supercell method [7]
within a single cubic unit cell.

2.2 Quartz

Original calculations were performed with CASTEP 6.1 using LDA exchange and correlation, optimised
norm-conserving pseudopotentials [11], a plane-wave cutoff of 880 eV and a 5× 5× 4 Monkhorst–Pack mesh
for k-point sampling. The optimised lattice parameters were 4.852Å and 5.350Å. DFPT calculations also
sampled using a 5 × 5 × 4 grid with dipole-dipole model corrections applied. The resulting force constants
were re-processed for this work using CASTEP 19.1.

2.3 Nb

Niobium calculations used the one-atom primitive cell with bcc lattice parameter of 3.25988Å, CASTEP
19.1, LDA exchange and correlation and a plane-wave cutoff of 900 eV. The NCP19 on-the-fly (OTF) library
pseudopotential used is constructed with unfrozen 4s and 4p semi-core states. Electronic states were sampled
using an 18× 18× 18 Monkhorst–Pack grid and smeared using Gaussian broadening with a width of 0.5 eV.
DFPT calculations were performed for a 9×9×9 grid of q-points and the force constant matrix constructed
by Fourier transforming on this grid.

2.4 Al

Force constants were obtained from a 4×4×4 supercell of the cubic (conventional) unit cell using Phonopy [12]
to implement and process a symmetrised finite-displacement method. The force calculator was VASP
5.4.4 [9], with the standard LDA PAW setup and parameters:

ENCUT = 600.000000

KSPACING = 0.100000

SIGMA = 0.200000

EDIFF = 1.00e-08

ALGO = fast

PREC = accurate

IBRION = -1

ISMEAR = 0

ISYM = 2

KPAR = 6

NCORE = 6

ADDGRID = .TRUE.

LASPH = .TRUE.

LREAL = .FALSE.

After k-point convergence and optimisation the unit cell has a lattice parameter of 3.984 207 �A.

2.5 Si

Force constants were obtained from a 5 × 5 × 5 Γ-centered Q-point mesh sampling of a Si primitive cell,
using DFPT with CASTEP 19.1, on-the-fly-generated norm-conserving pseudopotentials and LDA exchange-
correlation functional with a ”Precise” (266.9 eV) plane-wave basis set. The geometry was obtained by local
optimisation in CASTEP from an initial structure generated with Atomic Simulation Environment (ASE) [8].
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3 Powder-averaged calculation details and parameters

3.1 Al

The powder-averaging command was

euphonic-powder-map Al-444-lda.yaml --weighting coherent \

--q-max 11 --asr --temperature 5 \

--npts-density 400 --npts-min 500 --npts-max 20000 \

--energy-broadening 1 --q-broadening 0.1 \

--e-min -25 --e-max 60 --v-max 2 \

--angle-range 3 135 --e-incident 60 \

--no-widgets --style custom.mplstyle \

--save-to al-simulated.png \

--x-label ’$|\mathbf{Q}|$ $(\AA^{-1})$’ \

--y-label ’Energy transfer (meV)’

3.2 Si

The powder-averaging command was

euphonic-powder-map Si-prim-555.json --weighting coherent \

--q-max 12.5 --asr --temperature 300 \

--npts-density 400 --npts-min 500 --npts-max 20000 \

--energy-broadening 1 --q-broadening 0.1 \

--e-min -40 --e-max 80 --v-max 5 \

--angle-range 3 135 --e-incident 80 \

--no-widgets --style custom.mplstyle \

--save-to si-simulated.png \

--x-label ’$|\mathbf{Q}|$ $(\AA^{-1})$’ \

--y-label ’Energy transfer (meV)’
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