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Experimental data and constraints  

In fullrmc, experimental data are incorporated via experimental constraints. Equations 1-4 in the article 

text define the available forms for the PDF and diffraction data. As we can see in equation 2 in the main 

article, K(q) and S(q) are functions of the sine Fourier transfer of G(r) but F(q) is function of the sine 

Fourier transform of rG(r). We can also rewrite F(q) as a function of R(r) Given the following equality rsin(qr)dr  =  (sin(qr) − qcos(r))  

 

( ) = 4 ( ) ( )
= 4 ( ( ) − 4 ) ( )  
= 4 ( ) ( )  − (4 ) ( )  
= 4 ( ) ( )  − (4 ) ( ) − ( )  
= − 4 ( ( ) − ( ))| + 4 ( ) ( )  

S1 

From a simulation point of view, the computation of g(r), as shown in equation S2 is at the core of all 

experimental constraints. 

( ) = , , ( )
, = , , ( ) ( )⁄, ⁄,  2 

Here r is the real space distance between two atoms, q is the reciprocal space distance or the momentum 

transfer, ρ  is the average number density of the system, ρ , (r) is the pair density function of atoms i and j, w ,  is the relative weighting of atom types i and j, N is the total number of atoms, V is the volume of the 

system, n , (r) is the number of atoms i neighboring j at a distance r, v(r) is the annulus volume at distance r and of thickness dr, N ,  is the total number of atoms i and j in the system. 

Corrections    

When comparing results between measured and simulation computed data, certain normalization and 

corrections must be considered. As noted in the text we label G(r) as the corrected form of (r) and the 

experimental atom pair correlation is obtained by a Fourier transform of the measured structure factor. 

However, given the finite number of simulated atoms and the arbitrary nature of counting statistics in an 
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experiment, a simple constant scaling factor  must be applied to the experimental (r) as the first step 

of correction.  

( ) = 2 ( , , ) ( ) ( )  3 

In addition, the measured data accessible  range is limited between Q , Q  because of the finite 

size of the detector used in the experimental setup. From a mathematical point of view, this is like 

multiplying a −∞, ∞  unbound  range structure factor by a unit rectangle function (Q , Q , q) 

centered around Q = 0.5(Q + Q ) and Q = Q − Q  wide. Therefore G(r) can be written as 

in Equation S4.  

( ) = 2 ( ) ( ) = 2 ( , , ) ( ) ( )  S4 

Given that the Fourier transform of the product is the convolution of the Fourier transforms, and shifting 

 range to the origin by subtracting Q  has no effect on the unbound Fourier transform of (Q , Q , q), 

and that the Fourier transform of a rectangle function of unit intensity and Q  width is equal to ′Q sinc( Q r)′ then Equation S4 can be re-written to the following: 

( ) = ( , , ) ⨂ 2 ( ) ( )  

= ( , , ) ⨂ ( )  
= (0, , ) ⨂ ( )  
= ( , )⨂ ( )  

S5 

Q  is commonly misused in place of Q  in the sinc function, but ideally one must consider the non-zero 

size of the direct beam stop. Nevertheless, fullrmc adopts the widely used Q  correction notation instead 

of Q . 

Moreover, another correction must be considered to account for the limited Q space resolution of the 

experiment. The outcome of all experimental artifacts leading to a finite resolution is a width widening of 

the measuring units or information leak between neighboring ones. Given the random sampling nature of 

the collected experimental data, the resolution error statistic can be modeled with a q dependent standard 

deviation (q) normal distribution across the whole measure Q range. A good approximation of the 

resolution correction can be measured using standard material. It’s also acceptable and numerically 

convenient to use a constant = √  standard deviation Gaussian resolution function Γ( , q) =
√ e ⁄ = e  convoluting the simulated structure factor. Using the Fourier transform 
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property of a Gaussian Γ( , r) = √ Γ( , q) e dq = e , the corrected form of G(r) can 

be now written as the following 

( ) = ( , )⨂ 2 12 ( , ) ⨂ ( ) ( ) = ( , )⨂ ( ) S6 

With Equation S6, we complete the corrections that must be made to ( ) to account for the obvious 

experimental artifacts, but one additional correction that must be made to correct the simulated 

configuration ( ) to account for atomic position indetermination and uncertainty. This correction takes 

the form of another Γ( , , ) Gaussian function that separately convolutes Equation S2 with the atom pair 

correlation , ( ) .  

, = ′ , 1 − , − , + ,  7 

Here ,  is the atom pair Gaussian function standard deviation that is composed of atomic pair specific 

factor  ′ ,  and configuration factors  ,  and  q  modeling the r dependance of atomic vibration 

upon the atomic pair correlation. The simulated atomic structure is a static snapshot of the position of the 

atoms. In reality, atomic positions are not fixed in space, as they are subject both isotropic thermal 

vibrations and anisotropic vibrations such as phonons. Therefore, a simulated static position is considered 

the maximum position likelihood of a normally distributed probability distribution of positions that is  

dependent, combining the isotropic and anisotropic position uncertainty an atom can undergo. A more 

detailed explanation of Equation S7 can be found in Jeong et al. [3] Thus, Equations 7 and 8 in the text are 

the full and exact formulae that fullrmc uses to compute G(r) and all other pair correlation quantities for 

respectively PBC and IBC.  
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