JOURNAL OF
APPLIED
CRYSTALLOGRAPHY

Volume 55 (2022)
Supporting information for article:

Epitaxies of Ca-sulfates on calcite (CaCO3). II. The main $\{010\},\{001\}$ and $\{100\}$ forms of bassanite (CaSO4-0.5H2O) epi-deposited on the substrate form of $\{10.4\}$ calcite

Dino Aquilano, Marco Bruno, Stefano Ghignone, Linda Pastero and Andrea Cotellucci

Calcite is made by three supercells; each of them has multiplicity ($2 \times$) and is described by vectors and angles comprised between them, and that is: i) $[020]=9.979,1 / 3 \times[\overline{4} 11]=9.516, \delta=121.62^{\circ}$; ii) $-1 / 3 \times[45 \overline{1}]=9.516,-[020]=9.979, \delta=121.62^{\circ}$, and $-1 / 3 \times[\overline{4} 11]=9.516,1 / 3 \times[45 \overline{1}]=9.516, \rho=116.75^{\circ}$. The pseudo-hexagonal supercell with multiplicity $(6 \times)$, occupies an area of $242.58 \AA^{2}$. The rectangular 2D-cell on the (10.4) face is drawn in Figure S1 (upper left side), while an example of one 2D-supercell has been drawn as well in the same figure (lower left side).

Figure S1. The pseudo-hexagonality of the cleaved $\{10.4\}$ form of calcite. A ($6 \times$) supercell, (right side), made by three ($2 \times$) supercells, (left, lower side) is shown. The smallest 2D-cell of $\{10.4\}$ is also drawn (upper left).

Table S1. Other 2D-LC between $\{001\}_{\text {Bss }}$ and $\{10.4\}$ Cc.

Ranking	$\begin{gathered} \hline\{10.4\} \mathrm{Cc} \text { lattice } \\ \text { vectors }(\AA \AA) \end{gathered}$	$\begin{gathered} \{001\} \text { Bss lattice } \\ \text { vectors }(\AA) \end{gathered}$	Max. linear and area misfit ($\Delta \%$)	Obliquity $\left({ }^{\circ}\right)$	Notes
case (2c)	$\begin{gathered} \frac{1}{3}[\overline{4} 41]=12.8546 \\ {[43 \overline{1}]=24.816} \end{gathered}$	$\begin{aligned} & {[100]=12.032} \\ & {[\overline{1} 30]=24.013} \end{aligned}$	$\begin{aligned} & -6.95 \\ & -3.34 \end{aligned}$		No twin axis
2D cell area $(\AA)^{2}$ and multiplicity	283.033 (7x)	249.87 (3×)	-13.27	0	Coherent linear misfits
case (4a)	$\begin{gathered} {[42 \overline{1}]=24.309} \\ 3[010]=14.969 \end{gathered}$	$\begin{gathered} 2[100]=24.064 \\ 2[010]=13.86 \end{gathered}$	$\begin{aligned} & \hline-1.02 \\ & -8.00 \end{aligned}$		[010] ${ }_{\text {Bss }}$ twin axis
2D cell area $(\AA)^{2}$ and multiplicity	$363.901(9 \times$)	333.166 (4×)	-9.22	0	Coherent linear misfits
case (4b)	$\begin{aligned} \frac{2}{3}[\overline{4} 11] & =19.032 \\ 5[010] & =24.948 \end{aligned}$	$\begin{aligned} & {[1 \overline{2} 0]=18.349} \\ & {[210]=25.017} \end{aligned}$	$\begin{gathered} -3.72 \\ +0.276 \end{gathered}$		[210] ${ }_{\text {Bss }}$ twin axis
2D cell area $(\AA)^{2}$ and multiplicity	404.334 (10×)	$416.458(5 \times)$	+2.99	6.71	Opposite linear misfits

