

Volume 55 (2022)

**Supporting information for article:** 

Epitaxies of Ca-sulfates on calcite (CaCO3). II. The main  $\{010\}$ ,  $\{001\}$  and  $\{100\}$  forms of bassanite (CaSO4·0.5H2O) epi-deposited on the substrate form of  $\{10.4\}$  calcite

Dino Aquilano, Marco Bruno, Stefano Ghignone, Linda Pastero and Andrea Cotellucci

Calcite is made by three supercells; each of them has multiplicity (2×) and is described by vectors and angles comprised between them, and that is: i) [020] = 9.979,  $\frac{1}{3} \times [\overline{4}11] = 9.516$ ,  $\delta = 121.62^{\circ}$ ; ii)  $-\frac{1}{3} \times [45\overline{1}] = 9.516$ , -[020] = 9.979,  $\delta = 121.62^{\circ}$ , and  $-\frac{1}{3} \times [\overline{4}11] = 9.516$ ,  $\frac{1}{3} \times [45\overline{1}] = 9.516$ ,  $\rho = 116.75^{\circ}$ . The pseudo-hexagonal supercell with multiplicity (6×), occupies an area of 242.58 Å<sup>2</sup>. The rectangular 2D-cell on the (10.4) face is drawn in Figure S1 (upper left side), while an example of one 2D-supercell has been drawn as well in the same figure (lower left side).



**Figure S1.** The pseudo-hexagonality of the cleaved  $\{10.4\}$  form of calcite. A  $(6^{\times})$  supercell, (right side), made by three  $(2^{\times})$  supercells, (left, lower side) is shown. The smallest 2D-cell of  $\{10.4\}$  is also drawn (upper left).

**Table S1.** Other 2D-LC between  $\{001\}_{Bss}$  and  $\{10.4\}_{Cc}$ .

| Ranking                                        | {10.4} <sub>Ce</sub> lattice<br>vectors (Å)                         | {001} <sub>Bss</sub> lattice vectors (Å)      | Max. linear and area misfit (Δ%) | Obliquity (°) | Notes                          |
|------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|----------------------------------|---------------|--------------------------------|
| case (2c)                                      | $\frac{1}{3}[\overline{4}41] = 12.8546$ $[43\overline{1}] = 24.816$ | [100] = 12.032<br>$[\overline{1}30] = 24.013$ | -6.95<br>-3.34                   |               | No twin axis                   |
| 2D cell area (Å) <sup>2</sup> and multiplicity | 283.033 (7×)                                                        | 249.87 (3×)                                   | -13.27                           | 0             | Coherent linear misfits        |
| case (4a)                                      | $[42\overline{1}] = 24.309$                                         | 2[100] = 24.064                               | -1.02                            |               | [010] <sub>Bss</sub> twin axis |
|                                                | 3[010] = 14.969                                                     | 2[010] = 13.86                                | -8.00                            |               |                                |
| 2D cell area (Å) <sup>2</sup> and multiplicity | 363.901 (9×)                                                        | 333.166 (4×)                                  | -9.22                            | 0             | Coherent linear misfits        |
| case (4b)                                      | $\frac{2}{3}[\bar{4}11] = 19.032$                                   | $[1\overline{2}0] = 18.349$                   | -3.72                            |               | [210] <sub>Bss</sub> twin axis |
|                                                | 5[010] = 24.948                                                     | [210] = 25.017                                | +0.276                           |               |                                |
| 2D cell area (Å) <sup>2</sup> and multiplicity | 404.334 (10×)                                                       | 416.458 (5×)                                  | +2.99                            | 6.71          | Opposite linear misfits        |