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1 Further comparisons with Mie exact results

Within the Mie framework, the intensity scattered on detector from a dielectric spherical sample surrounded by
vacuum is given by:

Iscat,{||,⊥}(θ, x, n) =
1

(kr)2 i{||,⊥}(θ, x, n)Iin, (S1)

where Iin is the intensity of the incoming light field, n is the refractive index inside the sphere, and x = 2πR/λ
is called the size-parameter, with λ the wavelength of the incident radiation and R the radius of the sphere.
Furthermore, the subscripts ⊥ and || denote if the incident light is polarized perpendicular or parallel to the
scattering plane. The scattered irradiance per unit of incident irradiance, i{||,⊥}(θ, x, n) is given by:

i|| = |S2|2 i⊥ = |S1|2 . (S2)

S1 and S2 are the first and second component of the general scattering matrix [2, 1].
This section expands the comparison between the Scatman approximation and the exact Mie results to

account for size dependence.
Figure S1 shows twelve contour plots in which the target’s radius dependent deviations between the Scat-

man’s and the Mie theory calculations are plotted. The figure is split into two rows and six columns, where
each column addresses a different target radius (indicated by the top labels), and the two rows show different
visualizations of the deviations between the Scatman’s and the Mie theory calculations (indicated by the two
colorbars on the right side). The top row contains contour maps of the pixel-averaged absolute relative error,
which is defined as:

E[r, δ, β] =
1

N2

N∑
i,j=0

∣∣IScatman
i,j [r, δ, β]− IMie

i,j [r, δ, β]
∣∣

IMie
i,j [r, δ, β]

, (S3)

where N is the size of the diffraction image in pixel, I is the calculated scattered intensity, and the sum runs
across the whole image with index i, j. The top row, thereby, shows the magnitude of error by the Scatman
routine for a given δ, β, R triplet in units of the Mie result. From practical experience, we refer to deviations
E[r, δ, β] / 0.1 as quantitatively usable1, and deviations E[r, δ, β] / 0.5 as qualitatively usable2.

Since equation S3 is an average over the absolute relative error at every pixel, the information if the Scatman
procedure over- or under-estimates the scattering signal is lost. For example, if the Scatman routine estimates
the scattering signal for the first half of all scattering angles as half as low and then for the subsequent scattering

1The approximation could be used instead of the analytical solution for any downstream task
2The approximation contains all necessary features to withstand a visual comparison
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Figure S1: The target’s radius dependent deviations between the Scatman’s and the Mie theory calculations for
different combinations of δ, β. Overall twelve contour plots are shown, where the absorption β is always located
on the y-axis and the phase δ is always located on the x-axis. The figure is split into two rows and six columns,
where each column shows calculations for a fixed target radius (indicated by the top labels), and the two rows
show different visualizations of the deviations between the Scatman’s and the Mie theory calculations (indicated
by the two colorbars on the right side). The top row shows contour maps of the pixel-averaged absolute relative
error where the deviation is calculated following equation S3. There, the colorbar shows a linear scale between
zero and one, and a logarithmic scale between one and the maximum value. This is merely for visualization
reasons, as this way the most relevant parts (between zero and one) are well discernible from the regions where
the deviations are so large that it would have supplanted the region between zero and one otherwise. Two
contours are displayed for each subplot: the dashed line highlights the error threshold, set to 0.1, at which
the Scatman simulation can be considered in quantitative agreement with the exact Mie solution. Conversely,
the dotted line, running over an error value equal to 0.5, highlights the boundaries of the optical properties for
which the Scatman simulations are in qualitative agreement with Mie simulations. The bottom row’s colormap
shows the dissection into how much the Scatman over- or under-estimates the absolute relative error. There, a
value of 0.1 means that 10 % of the pixel-averaged absolute relative error is due to overestimation and, thereby,
90 % is due to underestimation by the Scatman routine.

angles as one-and-a-half times as high as the Mie calculation, would be undiscernible from the case where the
Scatman underestimates all scattering angles half as low or even where the Scatman overestimates the scattering
signal at all angles one-and-a-half times as high as in the Mie calculations. All three scenarios lead to a pixel
averaged absolute relative error of 0.5, yet stem from a very different simulation behavior by the Scatman.

Therefore, to resolve this ambiguity, the bottom row in Figure S1 shows the dissection of the pixel averaged
absolute relative error into how much the Scatman over- or under-estimates the error. There, the three examples
from above have a score of 0.5 (half of the scattering angles over- and half underestimated), 0 (all scattering
angles underestimated), and 1 (all scattering angles overestimated).

The combined interpretation of both rows in Figure S1 is necessary to fully understand the scale and direction
of the deviations between the Scatman routine’s and the Mie theory based calculations. With that in mind, the
following deductions can be made from Figure S1:

� The quality of the Scatman’s approximation deteriorates globally when the radius of the target increases3.
This is more pronounced with smaller values for β and higher values for δ

� The area with low absorption and refractive index close to unity provides the best Scatman approximation
across all target’s radii.

� For smaller target radii and for negative values of δ, the Scatman tends to underestimate the scattered
intensity, which is more pronounced the smaller the values for β. For larger radii, the Scatman almost
always overestimates the scattered intensity, only for negative values of δ and very low values for β, an
underestimation remains.

3Or when the probing wavelength decreases
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� The area at large and positive values for δ and low absorption remains the regime with the worst agreement
between Mie theory and the Scatman calculations, which was already observed in Figure 4 g) of the main
text (compare the solid and dashed blue lines with the red ones). This regime now grows even further
when the target’s radius increases as well, resulting in very strong disagreements (larger then one) between
the analytical and the Scatman calculations for δ ' 0.04 at a radius of 25λ.

2 Simulation of photon statistics

The assumption at the basis of the simulation of photon statistics is that the ratio between the incoming amount
of photons Ninc and the scattered one Nscat equals the ratio between the incoming power Win and the scattered
one Wscat, that is:

Nscat

Nin

=
Wscat

Win

. (S4)

The incoming power can be easily computed as the integral on the x, y plane of the incoming intensity,
which means:

Win =

∫∫
dxdy

∣∣φA0e
iΦ
∣∣2 = A2

0∆x∆y , (S5)

where ∆x and ∆y is the spatial extension of the incoming plane wave.
The incoming amount of photons is easily computed via:

Nin = nin∆x∆y , (S6)

where nin is the photon density.
Finally, the scattered power can be defined as the integral over the scattered intensities:

Wscat =

∫∫
dqxdqyI(qx, qy)

∝
∫∫

dqxdqy

∣∣∣∣∣
S−1∑
s=0

e−i·s∆z
√

k2
0−qx2−qy2F

{[
−δ̃s(x, y) + iβ̃s(x, y)

]
ψs

}
(qx, qy)

∣∣∣∣∣
2

.

(S7)

However, while it was noted in the main text that it is possible to assume ρ̃s(x, y) ∝
[
−δ̃s(x, y) + iβ̃s(x, y)

]
,

the proportionality constant is the one that defines the strength of the interaction between the incoming field
and the sample material.

Thus, the final total amount of scattered photons is computed through:

Nscat = ninC

∫∫
dqxdqyI(qx, qy)

A2
0

= neffin

∫∫
dqxdqyI(qx, qy)

A2
0

(S8)

where neffin = C nin is an effective photon density, that has to be given as parameter to the PyScatman module.
The proportionality factor C is directly connected to the scattering efficiency of the material, which is defined
as the ratio between the scattering cross section and the geometric one.
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