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Supporting Information

S1. Extension of Moore’s IFT

Moore uses a trigonometric series to define a function Q(r) = P(r)/r. This definition
resulted in a convenient relationship between the real space Q(r) and the reciprocal
space U(q) = qI(q), where the two are Fourier mates. This results in equations 17

through 18 defining P(r) and I(q):

P(r)= 27r Zansm (ngr) (17)
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where a,, are weights for each term in the series, the Moore coefficients, and D is the
maximum particle dimension (Note: modest variations compared to Moore’s original
description of these functions by a factor of 27 are due the use of ¢ = 47wsin(0)/A
rather than s = 2sin(0)/\, where 26 is the scattering angle and A is the wavelength).
Key to Moore’s approach (and other IFT methods (Glatter, 1977; Svergun, 1992)) is
that the weights a,, define both the real space and reciprocal space profiles, using the

appropriate basis functions. Least squares can be used to determine the a,’s and the

associated standard errors by minimizing the x? formula (equation 19):
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where I, is the experimental intensity for data point ¢, I.. is the intensity calculated
at ¢; given by equation 18, o; is the experimental error on the intensities, and N is
the total number of data points.

Moore’s use of Shannon information theory to define I(q) resulted in a selection of
q values, namely ¢, = nw/D, termed ”Shannon channels” (Feigin & Svergun, 1987;
Svergun & Koch, 2003; Rambo & Tainer, 2013). The intensities at gy, i.e. I, = I(gn),
therefore become important values as they determine the a,’s and thus can be used to
completely describe the low-resolution size and shape of a particle obtainable by SAS.
It is therefore convenient to derive the mathematical relationship between I,, and a,,.
Note that here we will further use m to refer to a particular term in the series, and we
will use n when referring to the terms in the function defining the entire series. The

intensity I,,, at g, = mm/D is

b= tlag) = 23" 2D [l ) _snlo 2} g
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the sum reduces to a single term when m = n, resulting in

I = (D>2 dm (22)
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and therefore

™
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A = (D) mly,. (23)
Equation 23 defines a relationship between the mth Moore coefficient and the intensity
at the mth Shannon point. Inserting equation 23 into equation 18 and simplifying
yields a general equation for I(q) as a function of the intensity values at the Shannon

points:
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Defining the basis functions B, as

nw)? sin
Bld) = ot (1) (25)

I(q) can now be expressed as a sum of the basis functions B,, weighted by physical

intensity values at g,
oo
I(q) =2 I,Bu(q). (26)
n=1

As in Moore’s original approach, the B,, functions are determined by the maximum
dimension of the particle, D. B,,’s for D = 50 A are illustrated in Figure 1. The P(r)

function can be determined from the continuous I(g) according to equation 27:

P(r) = 5y [ 1020 g (27)
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P(r) can also be represented using the series of I,, values by inserting equation 23 into

equation 17, resulting in equation 28:

P(r) = # S Insin (T) (28)
n=1

or by defining real space basis functions 5,, as follows:

P(r)= Z 1,5,(r) (29)
n=1
Sp(r) = % sin (?) . (30)

As intensity values measured precisely at each g, are typically not collected during
experiment, least squares minimization of y? can be used to determine optimal values
for each I, from the oversampled SAS profile, resulting in greatly increased precision
for each I, compared to measured intensities. To determine the set of optimal I,

values, let
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Values for each I,,, are sought which minimize x?, i.e. where §x?/81,, = 0, yielding
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for all m. Let
Y =Y 2 1(a) Bl (3)

and

Con =23 5 Bn(4) Bala) (39
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then Y = IC and I = YC™!, where I and Y denote the arrays of I,, and Y,
values, respectively, and C' is a matrix whose elements are C,,. The I,,,’s can now be
used with equation 26 to provide a smoothed representation of I(q) as well as P(r)
using equation 29. The matrix C~! contains all the information on the variances and
covariances of I. The standard deviation for I,,, can thus be calculated from C as

} v (35)
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Furthermore the errors on the calculated I.(¢q) curve can be calculated as:

1/2
Ol.(q) — 2 [Z Z Bn(Q)Bm(Q)CEn{L] (36)

and the errors in P(r) are

1/2
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S2. Derivation of Size Parameters and Error Estimates

Here the detailed derivation is presented for calculating R, from the I,,’s. Deriva-
tions for the remaining parameters and errors can be determined similarly. R, can be

calculated from the P(r) curve according to the following equation:

_ [rP(r)dr
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To determine the equation relating I,, coefficients to R4, we substitute 28 into equation

38. Since
D
0) = 47r/ P(r)dr (39)
0

the denominator can be simplified to

D 10
2/0 P(r)dr = -5
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The numerator becomes
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Since Porod’s law shows that intensity (and thus the I,,’s) decays as ¢~* for globular
particles, and similarly as ¢~2 for random chains, the infinite sum is guaranteed to
converge to a finite value. Since the sum converges, the Fubini and Tonelli theorems
(Fubini, 1907; Tonelli, 1909) show that the infinite sum can be exchanged with the

finite integral as follows

D < D .3
9 r . (nmr
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Pulling constants out of the integral results in

/OD Z 302 / 3 sin <n17;r) dr. (43)

The integral can be solved by three iterations of integration by parts and evaluated

at the limits to obtain

/OD r3sin <n17;r> dr = 713;: (1 _ (ni)2> (_1)n+1 ' (44)

Equation 44 can be combined with equation 43 and simplified to obtain the following
equation for the numerator

[7rpwar =3 2, ( - ) (-1 (45)
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which can be combined with equation 40 to ultimately obtain equation 8. Similar steps
can be followed for the remaining parameters.
The average vector length in the particle, 7, is defined as

__ JrP(r)dr
"= [ P(r)dr - (46)

which can be combined with equation 28 to yield equation 10.
The Porod invariant, (), is defined as the integrated area under the Kratky plot

(Porod, 1982)
< 9
Q= / q"1(q)dq (47)
q
which, by plugging in equation 26, yields equation 12.
The Porod volume can then be calculated, using its definition containing the Porod

invariant (Porod, 1982), by the following equation

2m21(0)
Vo = 48
p Q ( )
The Volume of Correlation (Rambo & Tainer, 2013), V., is defined as
1(0 Vi

~ Ja(g)dg 2l
where £, is the length of correlation (Porod, 1982). V. can thus be estimated from the
I,,’s according to equation 13. The length of correlation can be found from equation

49 or by combining equations 47, 48 and 49 it can be shown that

_ - Jal(a)dq
T P I(q)dg

Plugging in equation 26 into equation 50 yields equation 14.
Since the matrix C~! contains all the information on the variances and covariances
of the I,,’s, the uncertainties in each parameter can be derived using error propagation.

The error in 1(0) is thus

1/2
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The error in Ry is
1/2
OR, = 21 [ZZFF ] : (52)

In equation 8 it can be seen that R, has a non-linear dependence on I, and thus the

error on R, is dependent on R, itself. The error in 7 is

b ) 1/2
S [Z S5, Emcma] . (5)
The error in Q is . 1/2
oQ = (D) [Z %:(”m)ZCnnlm} : (54)

The error in V), is

27m21(0)
av, =2 5 (55)
The error in V, is
1/2
21 V2 1
oV, = DQI [Z Z nmSl nW)SZ<mW)Cnm] : (56)

The error in /. estimated from equation 49 becomes
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$3. Derivation of Analytical Regularization of P(r)

To enable the regularization of the P(r) curve for the derivation described above, S

has been chosen to take the commonly used form of equation 58:

D
S:/O [P”(r)]2d7' (58)

where P”(r) is the second derivative of P(r) with respect to r. The second derivative
is often chosen as it is sensitive to large oscillations in the P(r) function, i.e. smoother

functions will have fewer oscillations and thus S will be small. This representation



allows for an analytical solution to the problem of regularization of the P(r) curve.

To begin, the second derivative of P(r) can be calculated as
P'(r) = i 23 I, cos (W) - i ngﬁjrl sin <W> . (59)
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Equation 58 requires squaring and then integrating equation 59, which is not possi-
ble analytically. However, ultimately we want to use least squares minimization of T’
in equation 15 to determine the optimal I,,, values that yield the best fit of I(q) to the
experimental data and a smooth P(r) function. The minimization of 7" with respect
to I, requires taking the derivative of S with respect to I,,. Therefore, rather than

attempting to square and integrate equation 59, we can first take the derivative of S

with respect to I, as follows:
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Now we can take the derivative as
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Since the term in square brackets outside the sum is independent of n, it can be
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brought inside the sum, and the integration and summation exchanged:
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The terms in the integrand can now be expanded, yielding four terms in total:
08 > I /D 5 m2n <m7rr> n’m <n7rr>
— = cos cos | ——
m2m cos (mm‘) n3m? i (mrr)
- — rsin
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2D* D D3 D
m3r? _ (mar\ n37? . /nnr
+ 5D rsm( D ) 2D4TSID(D> dr. (63)

Each term can now be integrated and evaluated at the limits to obtain the following:
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These terms can be combined and represented by G, below. Note that when m =n
the equation is undefined, so the integration has been repeated after taking the limits
as m approaches n for the special case when m = n. Taken together, the derivative of

S with respect to I, can be now be represented as equation 65:

S >0
- > 1,Gon (65)
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Following the same procedure outlined in equations 31 through 34 and now including
65, equation 15 can now be solved by least squares minimization to yield the optimal
values for each I, while accounting for the regularizing function S according to the

following modified equations:

1
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Once again, letting
1
Y = Z ?Ie(Qi)Bm(Qi) (67)
and now letting

1
Cmn = aGmn +2 Z ?Bm<q7«)Bn(QZ) (68)

then the matrix of I,,, values, I, can be found in a similar fashion as before:

I=vyc (69)

S$4. Derivation of Sphere Parameters

The equation governing the scattering of a sphere of radius R is given by equation 70

(Rayleigh, 1910; Porod, 1982):

sin(qR) — qRcos(qR)1?
(qR)?

Isphe're(Q) = I(O) 3 (70)

(for simplicity, 1(0) is here used as a global scale factor accounting for proportionality
constants related to volume, concentration, scattering length density, etc., and is set to
unity in the following equations). By evaluating equation 70 at ¢, = nw/D = nw /2R,
we obtain a representation of the intensity from a sphere as a function of I,,’s, shown
by equation 16. All of the parameters derived above can be expressed for a sphere as
well, yielding well-known values for spheres of radius R = D /2. For example, equation
8 can be used to calculate the radius of gyration of a sphere of radius R by inserting

equation 16 yielding

nm
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The entire infinite sum converges to 23—0 and the expression simplifies to

3D 3
g,sphere: 20 :gRQ (72)



which is the well-known equation relating the radius of gyration of a solid sphere to
its radius. Similarly, the Porod invariant ) of a sphere can be calculated according to

equation 12 and shown to be

127 3T

Qsphere = ﬁ = Tm (73)

which can be combined with equation 48 to evaluate the Porod volume as
47
Vp,sphere = ?Rg (74)

which is the well-known equation for the volume of a sphere of radius R. Each of the
other parameters listed in the equations above can also be solved in a similar fashion

and shown to be as follows:
36

Fsphere = %R (75)
4 2

ch,sphere = §R (76)
3

Ec,sphere = iR (77)

The P(r) curve for a sphere has previously been derived (Porod, 1982):
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