JOURNAL OF APPLIED CRYSTALLOGRAPHY

Volume 55 (2022)
Supporting information for article:

Orientation evaluation of the UHMWPE fibers: previous
studies and an improved method

Hao Zhang, Jianrong Li, Yuihai Guo, Feng Tian, Yongna Qiao, Zheng
Tang, Caizhen Zhu and Jian Xu

Fig. 1 Definition of directions in USAXS pattern.
To illustrate the calculated method, the fiber axis, meridional and equatorial direction of SAXS patterns were defined in Fig. 1

Considering that the length of the microfiber (L) is much larger than width (D), we can approximately consider it as a needle-like structure. The intensity distribution of microfibers with uniaxial preferred orientation is given by ${ }^{[1]}$

$$
\begin{gather*}
I(s, \phi)=n \rho_{\mathrm{m}}^{2} \int_{0}^{\frac{\pi}{2}} I_{\mathrm{v}}\left(s, \phi^{\prime}\right) F\left(\phi, \phi^{\prime}\right) \sin \phi^{\prime} d \phi^{\prime} \tag{1}\\
F\left(\phi, \phi^{\prime}\right) \propto \int_{0}^{\pi} g_{\mathrm{ax}}(\beta) \mathrm{d} \eta \tag{2}\\
\cos \beta=\cos \phi \cos \phi^{\prime}+\sin \phi \sin \phi^{\prime} \cos \eta \tag{3}
\end{gather*}
$$

where n is the number of microfibers. $F\left(\phi, \phi^{\prime}\right)$ is the orientation distribution ("pole figure") as a function of ϕ for the direction ϕ^{\prime} in a system with simple fiber symmetry. $g_{\mathrm{ax}}(\beta)$ is the orientation distribution of the long axes of the microfibers. Accordingly, $g_{\mathrm{ax}}(\beta) \propto \mathrm{F}(\phi, 0)$ and the corresponding equatorial distribution $g_{\mathrm{ep}}(\phi)$ $\propto \mathrm{F}(\phi, \pi / 2)$.

Because of $\mathrm{L} \gg \mathrm{D}$ and $g_{\mathrm{ep}}(\phi)$ is a relatively narrow distribution centered on $\phi=\pi / 2$, we can use the approximations:

$$
\begin{gather*}
F\left(\phi, \frac{\pi}{2}-\Delta \phi^{\prime}\right) \propto g_{\mathrm{eq}}\left(\phi-\Delta \phi^{\prime}\right)+g_{\mathrm{eq}}\left(\phi+\Delta \phi^{\prime}\right) \tag{4}\\
I_{\mathrm{v}}\left(s, \frac{\pi}{2}-\Delta \phi^{\prime}\right)=\rho_{\mathrm{m}}^{2}\left|\Phi_{D}\right|^{2}\left(\operatorname{scos} \Delta \phi^{\prime}\right)\left|\Phi_{L}\right|^{2}\left(\sin \Delta \phi^{\prime}\right) \tag{5}
\end{gather*}
$$

Furthermore, since $\Delta \phi^{\prime}$ is considered to be small, we put $\cos \Delta \phi^{\prime} \simeq 1$ and \sin $\Delta \phi^{\prime} \simeq \Delta \phi^{\prime}$, which results in:

$$
\begin{equation*}
I_{\mathrm{v}}\left(s, \frac{\pi}{2}-\Lambda \phi^{\prime}\right) \simeq \rho_{\mathrm{m}}^{2}\left|\Phi_{D}\right|^{2}(s)\left|\Phi_{L}\right|^{2}\left(s \Delta \phi^{\prime}\right) \tag{6}
\end{equation*}
$$

Considering the symmetry of $F\left(\phi, \pi / 2-\Delta \phi^{\prime}\right)$ and $g_{\mathrm{ep}}(\phi)$, we can rewrite as:

$$
\begin{gather*}
I(\mathrm{~s}, \phi)=n \rho_{\mathrm{m}}^{2}\left|\Phi_{D}\right|^{2}(s) \int\left|\Phi_{L}\right|^{2}\left(s \Delta \phi^{\prime}\right) g_{\mathrm{eq}}\left(\phi-\Delta \phi^{\prime}\right) \mathrm{d} \Lambda \phi^{\prime} \tag{7}\\
I(s, \phi)=n \rho_{\mathrm{m}}^{2}\left|\Phi_{D}\right|^{2}(s)\left[\left|\Phi_{L}\right|^{2}(s \phi)_{\phi} g_{\mathrm{eq}}(\phi)\right] \tag{8}
\end{gather*}
$$

For the evaluation, we choose two functions, first the tangential width of the equatorial distribution $B_{\pi / 2}(s)$ and, second, the scattering on the equator. Since the integral over $g_{\text {ep }}$ is considered as constant, the latter expression can be simplified as:

$$
\begin{gather*}
B \frac{\pi}{2}(s)=\frac{1}{I\left(s, \frac{\pi}{2}\right)} \int I(s, \phi) \mathrm{d} \phi \\
=\frac{\int\left[\left|\Phi_{L}\right|^{2}(s \phi)_{\phi}^{*} g_{\mathrm{eq}}(\phi)\right] \mathrm{d} \phi}{\left[\left|\Phi_{L}\right|^{2}(s \phi)_{\phi} g_{\mathrm{eq}}(\phi)\right]\left(\frac{\pi}{2}\right)} \tag{9}\\
I\left(s, \frac{\pi}{2}\right)=n \rho_{\mathrm{m}}^{2}\left|\Phi_{D}\right|^{2}(s) \frac{1}{B \frac{\pi}{2}(s)}\left[\int\left|\Phi_{L}\right|^{2}(s \phi) \mathrm{d} \phi\right] \times\left[\int g_{\mathrm{eq}}(\phi) \mathrm{d} \phi\right] \tag{10}\\
I\left(s, \frac{\pi}{2}\right) \propto n \rho_{\mathrm{m}}^{2} \frac{L}{s B \frac{\pi}{2}(s)}\left|\Phi_{D}\right|^{2}(s) \tag{11}\\
\int\left|\Phi_{L}\right|^{2}(s \phi) \mathrm{d} \phi=\frac{1}{s} \int\left|\Phi_{L}\right|^{2}\left(s_{3}\right) \mathrm{d} s_{3}=\frac{L}{s} \tag{12}
\end{gather*}
$$

The function $B_{\pi / 2}(s)$ is the integral width of the convolution in ϕ of $\left|\Phi_{L}\right|^{2}(s \phi)$ and $g_{\text {eq }}(\phi)$. If $\left|\Phi_{L}\right|^{2}$ and $g_{\text {eq }}$ can be approximated by Gaussian distributions, we obtain the relationship:

$$
\begin{equation*}
s^{2} B_{\pi / 2}^{2}(s)=\frac{1}{L^{2}}+s^{2} B_{\Phi} \tag{13}
\end{equation*}
$$

where $1 / L$ and $B_{e q}$ are the integral widths of $\left|\Phi_{L}\right|^{2}(s \phi)$ and $g_{\text {eq }}(\phi)$, respectively.

Reference

[1] Thünemann A F, Ruland W. Microvoids in Polyacrylonitrile Fibers: A SmallAngle X-Ray Scattering Study[J]. Macromolecules, 2000, 33(5): 1848-1852.

