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Jérôme Deumer,a* Brian R. Pauw,b* Sylvie Marguet,c* Dieter Skroblin,a
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S1. Implementation details of CDEF

S1.1. CDEF vs. the SPONGE vs. other methods

Fig. S1. Comparison between CDEF and the SPONGE. Both methods use Debye’s
scattering formula to calculate the single-particle scattering profile starting from
the associated three-dimensional (3D) mesh which represents the arbitrary particle
shape.

In this section, CDEF is compared to similar pre-existing approaches for the com-

putation of form factors using Debye’s scattering formula.

The SPONGE has already proven to successfully simulate helicoidal supramolecular

copolymers at different structural parameters (Aratsu et al., 2020), therefore it is used

here to verify the accuracy of the much faster CDEF in order to use the latter with

trust. In contrast to the SPONGE, which directly evaluates Debye’s formula for each

q, Debyer reduces the computational effort by a two-step process where the binned

distance distribution histogram is first computed and subsequently reused for each

value of q. This approximation should have a negligible effect if the bin size of the
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histogram is sufficiently small compared to the particle size.

By default, CDEF also employs a quasi-random filling as opposed to the true random

filling as used by the SPONGE. As a result, a smaller number of punctiform scatterers

can be used w.r.t. the same usable q-range which also reduces computational effort.

All in all, the basic concept of CDEF originates from (Hansen, 1990) as well as

(Pedersen et al., 2012). For instance, Hansen calculated I(q) of a complex-shaped fib-

rinogen using the distance distribution function of a corresponding quasi-random point

cloud (Hansen, 1990), without rebinning the distance distribution however. Moreover,

Hansen focused on calculating single-particle I(q), but did not consider polydisperse

particle ensemble. Pedersen et al., on the other hand, evaluated polydisperse immune-

stimulating-complex particles by applying Debye’s equation. In doing so, the true-

random particle cloud including 40 000 scatterers was split into 10 subsets of 4 000

scatterers from which 10 single pair distance histograms were calculated and then

summed up to generate the total histogram (Pedersen et al., 2012). Compared to the

direct computation of the total histogram, this procedure lowers computational cost

by one order of magnitude (Pedersen et al., 2012), but at the expense of accuracy.

Even though the approach of Pedersen et al. (2012) is very similar to CDEF, cor-

responding software has not been published to our knowledge such that it would be

accessible to SAXS experimentalists.

Since CDEF and SPONGE use a random filling method (i.e., quasi-random or true

random) instead of the exact atomic positions of the periodic lattice of particles, the

computational time for both methods is significantly less than for a periodic lattice.

For the evaluation of Au nanocubes with face-to-face distance 50 nm, for instance,

choosing 30 000 rather than ∼ 5.2 · 106 scatterers which is the approximate number of

atoms in a gold crystallite of this size (Pauling, 1947), decreases computational effort

by four orders of magnitude (∼ 30 500). The computation of a single SAXS profile
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using CDEF with 30 000 scatterers requires ∼ 500ms on a single modern desktop

computer with a quad core processor. Hence, this would need more than 4 hours in

case of 5.2 · 106 scatterers, which justifies the simplification using the quasi-random

filling instead of the exact crystallographic positions.

In addition, CDEF allows to individually adjust the scattering length of each sin-

gle scatterer as described by Pedersen et al. (2012) leading to much more versatile

applications such as fitting core-shell-structured particles.

Besides the use of a periodic grid for particle formation, the use of a Poisson disc

algorithm would also be conceivable, but it converges slower and slower with increasing

scattering point number than the use of a random distribution method. Figure S2

shows here that the Poisson disc method is not closer to the analytical solution.

For SAXS on isotropic macromolecules, similar approaches have been made in the

past by the European Molecular Biology Laboratory (EMBL) to calculate I(q) from

the scattering properties of the underlying substructure by introducing CRYSOL,

which are part of the ATSAS software package (Franke et al., 2017; Svergun et al.,

1995). However, unlike CDEF, CRYSOL calculates I(q) of macromolecules in dilute

solution from the exact crystallographic positions and form factors of their individual

atoms (Svergun et al., 1995). This involves spherical averaging using spherical harmon-

ics and their orthogonality properties to obtain a simplified expression for the total

molecular form factor. Since CRYSOL also accounts for scattering from the missing

water molecules and the hydration shell of the molecules as correction terms for the

total form factor of the molecules, it can resolve scattering profiles up to q ≤ 4 nm−1

(Svergun et al., 1995). However, despite the higher q range, it is not necessary to use

accurate crystallographic positions to adequately calculate I(q) of suspended nanopar-

ticles. Moreover, the electron contrast of particles composed of metals or oxides is much

higher than that of biomolecules, which allows us to ignore a possible hydration shell
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for accurate SAXS data evaluation. Another software from ATSAS called DAMMIN

calculates scattering patterns based on a substructure consisting of artificial scatter-

ers called dummy atoms, which is generally more similar to CDEF than CRYSOL

(Svergun, 1999; Franke et al., 2017).

Lastly, there is the comprehensive software package DEBUSSY using Debye’s for-

mula which offers users a GUI and therefore allows one to compute scattering pat-

tern of crystalline or non-ordered nanostructures without any programming knowledge

(Cervellino et al., 2015). Even though users of DEBUSSY are able to generate nano-

scale clusters, such as nanoparticles or quantum dots, by defining the coordinates

of the underlying (atomic) structure to calculate the corresponding SAXS scattering

profiles (Bertolotti et al., 2016), CDEF overall seems to be more suited to analyze

SAXS scattering pattern of nanoparticles in the upper nano-scale region due to the

much easier cloud building feature of simply loading an stl-file defining the particle’s

shape and then choosing the desired filling algorithm.

IUCr macros version 2.1.10: 2016/01/28



6

Fig. S2. Comparison of normalized single-particle SAXS profiles using CDEF with the
exact analytic SAXS profile IAnal. of a cube with edge length = 10 nm and electron
contrast ∆ρ = 1nm−3. All point clouds consist of ∼ 30 000 scatterers. Using a
Poisson-disc-distribution does not result in a higher agreement of the corresponding
scattering profile with the analytic profile when compared to the Sobol or Halton
distribution.
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S2. CDEF vs. analytic formulae

This section is intended as a supplement to the comparison between numerically calcu-

lated and analytical form factors. Here we also present background modeled scattering

curves by changing the number of filled bins of the corresponding pair distance distri-

bution.

For the true random distribution, it is generally recommended to exclude only the

self-correlation as suggested by Pedersen et al. (2012), which correpsonds to the first

histogram bin with zero distance. For the quasi-random case, users of CDEF have

several options. According to the comparisons shown below, the best correspondence

in the mid q range is achieved by not deleting any bins. However, if this leads to

an excessive background for higher q values and the number of scatterers cannot be

increased, a few histogram bins can be deleted, starting with the second one, and leave

the first bin untouched. In this chapter, we show examples for the different particle

shapes of how many consecutive bins need to be deleted for the curves to be closest

to the analytical solution.
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Fig. S3. Comparison of normalized single-particle SAXS profiles using CDEF with the
exact analytic SAXS profile IAnal. of a sphere with radius R = 10nm and electron
contrast ∆ρ = 1nm−3. Manual changes to the pair distance histogram allow user
of CDEF to increase the usable q-range of the numeric curves through modeling of
the artificial background signal.

For proper modeling of the artificial background signal of the quasi-random SAXS
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pattern of the spherical cloud, the first 60 of 10 000 bins were deleted (nk=1,...,60 = 0),

except the first bin nk=0 to avoid excessive background modeling. The background

modeled SAXS profiles of the quasi- and true-random (nk=0 = 0) filling algorithms

are quite similar with a small advantage for the quasi-random distributions in the

lower and middle q-region w. r. t. (I / IAnal.)-plot (fig. S3). Interestingly, this remains

the case even if the background modeled true-random curve is compared to the non-

modeled quasi-random profiles (fig. S4).
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Fig. S4. Comparison of normalized single-particle SAXS profiles using CDEF with
the exact analytic SAXS profile IAnal. of a sphere with radius R = 10nm and elec-
tron contrast ∆ρ = 1nm−3. Only the true-random profile is background modeled
(nk=0 = 0).
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In order to evaluate the performance of CDEF for particles with lower symmetry,

fig. S5 compares analytically and numerically obtained single-particle SAXS profiles

of a cylinder with aspect ratio L/R = 6 and ∆ρ = 1nm−3. The analytic SAXS curves

were calculated using the well-known expression (Guinier & Fournet, 1955; Galantini

et al., 2004). For the calculation of each numeric profile, cylindrical clouds of N ≈

30 000π/4 ≈ 23 560 scattering points were generated similarly to the spherical clouds

before. The quasi-random profiles match the analytic one up to the 4th local maximum,

whereas the true-random pattern hardly matches the analytic solution up to the first

local maximum.

After deletion of the first bin (nk=0 = 0) of the true-random histogram as well

as 35 out of 10 000 (nk=1,...,35 = 0) bins of the quasi-random histogram, the quasi-

random SAXS profiles are still more consistent with the analytic solution regarding

the lower and middle q-range (fig. S6). The specific upper bin limit of 35 for the

cylinder was determined by gradually clearing bins until an adequate background

modeling was obtained, as done for the spherical and the cubic point cloud. As for the

spherical cloud, comparing the background modeled true-random curve to the non-

modeled quasi-random profiles indicates that the quasi-random distribution seems to

be superior in this q-region (fig. S5 vs. S6).
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Fig. S5. Comparison between numeric and analytic single-particle SAXS profiles of a
cylindrical particle with radius R = 2nm, length L = 12nm and electron contrast
∆ρ = 1nm−3.
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Fig. S6. Comparison between numeric and analytic single-particle SAXS profiles of
a cylindrical particle with radius R = 2nm, length L = 12nm. All profiles are
background modeled.
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Regarding ideal cubes, CDEF is also able to adequately match IAnal. as depicted in

fig. S7. The analytic curve was calculated by averaging the expression from (Mittelbach

& Porod, 1961) over two independent spatial coordinates. For this particular cube with

side-to-side length 10 nm, CDEF with 30 000 scatterers as well as IAnal. were evaluated

on 999 q-values, whereas for the calculation of each numeric profile CDEF needed only

∼ 500ms. Background modeling was conducted by clearing the first 45 of 10 000 bins

(nk=1,...,45 = 0) for the quasi-random profiles as well as the first bin (nk=0 = 0) for the

true-random profile. This specific upper bin limit of 45 for the cube was determined

by gradually clearing bins until an adequate background modeling was obtained, as

done for the spherical and the cylindrical point cloud.
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Fig. S7. Comparison between numeric and analytic background modeled SAXS profiles
of an ideal cube with side-to-side length 10 nm and electron contrast ∆ρ = 1nm−3.
In the lower and middle q-region, the quasi-random profiles are more consistent
with the analytic profile compared the true-random one.
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S3. Diverse models of cubic particles

This section describes the construction of the cubic shape with truncated edges.

S3.1. Hessian normal - cube with truncated edges

The Hessian normal form was used to parameterize the degree of truncation with

respect to the cubic model with symmetrically cut edges. It describes the shortest

distance D of a point with the Euclidean position x⃗ relative to a given plane described

by a support vector a⃗ and normal vector n⃗:

D = (x⃗− a⃗) · n⃗. (1)

For each scattering point with position x⃗, D is calculated for each of the 12 sectional

planes which cut the edges of the cubic model. If D < 0 for all 12 sectional planes,

the point is located inside the cube, because the defined normal vectors n⃗ are pointing

away from the cloud’s center by definition. All outside points are deleted by setting

their corresponding form factor to zero. The degree of truncation can be influenced

by equally varying the length of all a⃗ by modifying an introduced truncation factor

T , with

a⃗ = T
L√
2
n⃗. (2)

With this definition, T = 1 indicates no truncation and corresponds to the ideal

cube.
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S4. Results and Discussion

With this chapter we want to complement the chapter of the published work, where

only the results of the cubic model with rounded edges are presented. In addition, this

chapter contains the fits with an ideal cube as well as a cube with truncated edges.

First, the results for the ideal cube are shown, followed by the truncated cube.

For comparison, a spherical model was additionally included in the evaluation as

depicted in fig. S8. The weak match between experimental data and spherical fit

demonstrates the sensitivity of the scattering experiment to the particle shape. Even

though the ideal cubic model also leads to pronounced deviations at 0.2 nm−1 < q, in

general it matches the oscillations with better agreement compared to the spherical

model which is also confirmed by the corresponding values of χ2. The spherical model

only matches the Guinier region satisfyingly resulting in a mean diameter of d =

65.5 nm with a standard deviation of σd = 6.7 nm.
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Fig. S8. CDEF versus the SPONGE. Fit results of Au nanocubes using the model
of an ideal cube. Coupling of the SPONGE with MCSAS additionally reveals an
uncertainty of IFIT marked in red the SPONGE’s I/IFIT-Plot, thus an uncertainty
of the underlying size distribution can be stated (fig. S9).

Using the ideal cubic model reveals a volume-weighted mean face-to-face-distance

of L = 52.5 nm with a distribution width of σL = 2.8 nm. With the SPONGE we get

an mean value of L = (53.20 ± 0.06) nm with a distribution width of σL = (2.7 ±

1.0) nm which leads to a relative deviation of ∆L/L ≈ 1.5% between CDEF and

the SPONGE. Regarding the Guinier region, CDEF seems to give a slightly better fit

compared to the SPONGE, whereas in the Porod region the SPONGE is superior.
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Fig. S9. CDEF vs. the SPONGE: Normalized distribution of side-to-side length of
the Au nanocubes. The uncertainty of the volume-weighted distribution using the
SPONGE with a mean value of L = (53.20±0.06) nm is indicated by error bars. The
volume-weighted distribution using CDEF reveals a mean value of L = 52.5 nm.

The truncated cubic model reveals a mean value of L = 53.4 nm with σL = 3.3 nm,

and a truncation factor of T = 0.91. From a geometrical perspective, this truncation

factor means that on average ∼ 2.6 nm are cut off on both sides of each edge. With

the SPONGE we obtain a value of L = (54.00± 0.04) nm with a distribution width of

σL = (3.0± 0.8) nm is obtained. A reason for the relative deviation of ∆L/L ≈ 1.1%

between CDEF and the SPONGE (as for the other cubic models) may result from

the fact that CDEF is confined to a Gaussian size distribution, whereas the SPONGE

is not. This assumption is also confirmed by the fact that there are no deviations in

the corresponding single-particle and polydisperse scattering profiles when comparing

CDEF with the SPONGE.
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Fig. S10. CDEF versus the SPONGE. Fit results of Au nanocubes using a cubic model
with truncated edges. Coupling of the SPONGE with MCSAS additionally reveals
an uncertainty of IFIT marked in red as explained in fig. S8, thus an uncertainty of
the underlying size distribution can be stated (fig. S11).

IUCr macros version 2.1.10: 2016/01/28



21

Fig. S11. CDEF vs. the SPONGE: the SPONGE’s volume-weighted size distribution
reveals a mean value of L = (54.00 ± 0.04) nm. The volume-weighted distribution
using CDEF shows an expectation value of L = 53.4 nm.
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