

Volume 55 (2022)

Supporting information for article:

A drug discovery-oriented non-invasive protocol for protein crystal cryoprotection by dehydration, with application for crystallization screening

Dom Bellini

Figure S1. Examples of choices of loop size in comparison to the size of the crystals. Also the X-ray beam size is shown by the red circle with a cross-hair in the middle.

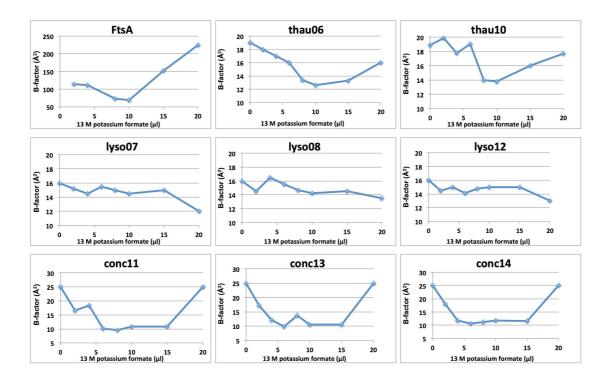


Fig. S2. Correlation between amounts of KF13 used for crystal drop dehydration and average Wilson B-factor.

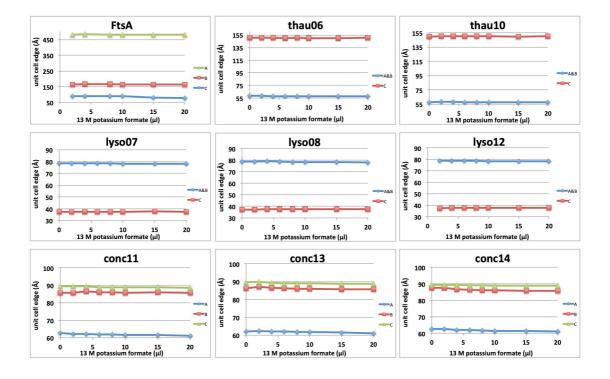


Fig. S3. Correlation between amounts of KF13 used for crystal drop dehydration and unit cell contraction of datasets collected for different crystal samples.

	Fts	Α									
KF13 (ul)	а	b	c								
2	90.7	164.1	481.70								
4	89.7	165.2	482.75								
8	88.9	165.2	481.30								
10	88.5	164.5	481.60								
15	79.3	164.3	480.70								
20	77.9	164.3	480.95								
Lyso07			Lyso08			Lyso12					
KF13 (ul)	a = b	С		KF13 (ul)	a = b	c		KF13 (ul)	a = b	С	
0	78.8	37.3	8	0	78.77	37.	17	0	unprocessable u	processable	
2	78.74	37.4	6	2	78.64	37.	32	2	78.69	37.35	
4	78.45	37.4	4	4	79.13	37.	69	4	78.56	37.55	
6	78.51	37.5	1	6	78.67	37.	60	6	78.56	37.57	
8	78.54	37.5	4	8	78.51	37.	54	8	78.54	37.61	
10	78.25	37.5	5	10	78.31	37.	58	10	78.29	37.55	
15	78.33	37.7	7	15	78.29	37.	62	15	78.29	37.54	
20	78.16	37.4	0	20	78.11	37.	40	20	78.24	37.52	
	C11				C12				C14		
KF13 (ul)	Conc11	Ь	с	KF13 (ul)	Conc13	b	с	KF13 (ul	Conc14	b	с
0	62.87	85.56	89.51	0	62.19	86.38	89.54	0	62.60	87.5	89.50
2	62.17	85.59	89.40	2	62.26	86.99	89.80	2	62.60	87.5	89.45
4	62.12	86.57	89.30	4	62.08	86.5	89.24	4	62.09	86.52	89.26
6	61.74	86.09	88.94	6	62.03	86.37	89.21	6	62.00	86.37	89.10
8	61.87	86.13	88.99	8	61.77	86.07	89.03	8	61.68	86.11	89.05
10	61.53	85.76	88.86	10	61.79	86.11	89.07	10	61.51	85.91	88.92
15	61.49	85.85	88.82	15	61.62	85.86	88.90	15	61.49	85.78	88.87
20	61.12	85.66	88.50	20	61.05	85.70	88.70	20	61.04	85.60	88.90

Fig. S4. Tables with values plotted in Fig. S2.

Table S1. Crystallisation conditions in the 96-well plates used to investigate promotion of crystal nucleation in already equilibrated crystals drops. Each table corresponds to a full 96-well plate, each letter corresponds to a row with 12 identical repeats and two drops with different protein concentrations were set up for each condition.

96-well	Lysozyme	NaCl	RH (%)
plate rows	(mg/ml)	(M)	
A	20	0.8	97
В	20	0.7	97.3
С	20	0.6	97.6
D	20	0.5	98
E	20	0.4	98.3
F	20	0.3	98.7
G	10	0.2	99.1
	10	3.2	
Н	10	0.1	99.4

96-well	Thaumatin	NaK tartrate	RH (%)	
plate rows	(mg/ml)	(M)		
A	12	0.7	95.5	
	6			
D.	12	0.6	96.2	
В	6	0.6		
С	12	0.5	96.8	
	6	0.5		
D	12	0.4	97.4	
	6	-	,,	
Е	12	0.3	98	
	6	-		
F	12	0.2	98.5	
	6	1		
G	12	0.1	99.1	
	6	-		
Н	12	0.05	99.4	
	6	1		
l	1	i	i	