

Volume 55 (2022)

Supporting information for article:

Molecular dynamics investigation of a one-component model for the stacking motif in complex alloy structures

Jung Wen Yeh, Kouji Tomita, Yuuta Imanari and Masaya Uchida

Supporting Information: Molecular dynamics investigation of a one-component model for the stacking motif in complex alloy structures

Jung Wen Yeh^a, Kouji Tomita^b, Yuuta Imanari^b and Masaya Uchida^{ac*} ^aDepartment of Information Systems, Graduate School of Engineering, Saitama Institute of Technology, Fukaya, Saitama, 369-0293, Japan ^bDepartment of Information Systems, Faculty of Engineering, Saitama Institute of Technology, Fukaya, Saitama, 369-0293, Japan ^cAdvanced Science Research Laboratory, Saitama Institute of Technology, Fukaya, Saitama, 369-0293, Japan

Correspondence email: uchida.masaya@sit.ac.jp

1. Time-averaged atomic positions

Time-averaged atomic positions were obtained from the trajectory of the molecular dynamics (MD) simulations for the μ -Al₄Mn phase; these time-averaged positions are given in Table S1.

Table S1. Time-averaged atomic positions of the Al atoms. The data is in units of Å on a threedimensional Cartesian coordinate system. The configurations are obtained 190 ps after relaxation (see Fig. 3). The A-layer is set to be at z = 0. The resulting atomic arrangement indicates a pseudo-mirror symmetry about the A-layer within standard deviation.

	x	у	Z		x	у	z		x	y	z
1	2.5	0	0	4	7.59±0.12	2.73±0.24	-2.44±0.09	ç	7 2.46±0.11	1.44±0.10	2.47±0.14
2	10	0	0	5		-0.03±0.06	-1.54±0.13	9	8 10.03±0.11		2.45±0.11
3	17.5	0	0	5		1.46±0.12	-2.49±0.07	9	9 8.62±0.14		-1.49±0.14
4	-1.25	2.165	0	5		5.55±0.16	-2.43±0.12	10			1.48±0.13
5	1.25	2.165	0	5	20.0010.21	-0.06±0.22	-3.85±0.13	10	12.1010.10		1.49±0.14
6	3.75	2.165	0	5	0.0510.50	2.80±0.15	-2.39±0.09	10	10.1110.10		2.46±0.08
7	6.25	2.165	0	5	410010114	6.57±0.10	-1.47±0.15	10	1107 1011		1.48±0.17
8	8.75	2.165	0	5	11.57 10.00	6.56±0.11	1.50±0.18	10	2.4110.10		2.47±0.11
9	11.25	2.165	0	5	0.0510.10	1.36±0.16	-2.48±0.13	10	0.1510.23		-1.47±0.14
10	13.75	2.165	0	5	1010010111	2.78±0.16	-2.44±0.10	10			1.50±0.15
11	16.25	2.165	0	5		4.21±0.10	-1.56±0.10	10			2.44±0.08
12	0	4.33	0	6		9.34±0.14	-2.43±0.08	10			1.44±0.14
13	5	4.33	0	6		4.16±0.11	-1.52±0.14	10			2.45±0.10
14	7.5	4.33	0	6		5.16±0.12	-2.46±0.12	11			2.45±0.11
15	12.5	4.33	0	6		9.34±0.14	-2.45±0.09	11			1.51±0.14
16	15	4.33	0	6		9.31±0.13	2.44±0.09	11			2.46±0.07
17	-1.25	6.495	0	6	5 16.21±0.09	6.57±0.10	-1.49±0.15	11	.3 7.62±0.14		2.45±0.08
18	1.25	6.495	0	6		5.17±0.10	-2.42±0.07	11			2.44±0.09
19	6.25	6.495	0	6	-4.89±0.16	2.68±0.16	-2.45±0.09	11	.5 16.22±0.11	6.62±0.10	1.47±0.10
20	13.75	6.495	0	6	1.36±0.15	7.99±0.14	-2.43±0.08	11	.6 -3.79±0.13	9.40±0.11	2.45±0.08
21	-5	8.66	0	6	1.35±0.10	10.77±0.13	-1.48±0.15	11	.7 0.01±0.13	13.12±0.15	1.50±0.19
22	-2.5	8.66	0	7	3.79±0.15	6.51±0.09	-1.47±0.14	11	.8 3.86±0.15	12.13±0.11	2.41±0.08
23	0	8.66	0	7	6.17±0.13	7.96±0.11	-2.43±0.07	11	.9 1.38±0.12	7.96±0.25	2.45±0.12
24	2.5	8.66	0	7	2 13.84±0.11	10.75±0.12	-1.44±0.15	17	6.17±0.13	7.95±0.11	2.43±0.08
25	5	8.66	0	7	3 11.39±0.15	9.41±0.23	-2.43±0.10	17	10.01±0.10	4.17±0.13	1.46±0.16
26	7.5	8.66	0	7	-3.81±0.12	9.39±0.17	-2.46±0.11	17	13.78±0.07	10.78±0.08	1.50±0.14
27	10	8.66	0	7	-1.45±0.11	7.91±0.19	-2.46±0.10	17	-3.78±0.19	12.19±0.10	2.43±0.12
28	12.5	8.66	0	7	-0.01±0.11	13.13±0.10	-1.44±0.21	12	4 -2.43±0.13	17.32±0.11	1.46±0.14
29	-3.75	10.825	0	7	5.22±0.17	14.50±0.13	-2.43±0.09	17	1.39±0.12	10.78±0.11	1.48±0.16
30	3.75	10.825	0	7	6.19±0.10	10.75±0.11	-1.48±0.12	17	6 3.78±0.09	9.39±0.11	2.47±0.10
31	8.75	10.825	0	7	13.75±0.16	7.99±0.11	-2.46±0.10	17	7 6.25±0.12	10.77±0.09	1.54±0.10
32	11.25	10.825	0	8	12.47±0.14	13.08±0.14	-1.45±0.14	17	10.00±0.12	14.52±0.11	2.43±0.09
33	-5	12.99	0	8	-3.95±0.40	12.31±0.50	-2.43±0.10	17	.9 8.60±0.16	9.37±0.17	2.45±0.10
34	-2.5	12.99	0	8	-1.40±0.15	10.74±0.13	-1.56±0.14	13	-7.60±0.11	13.12±0.12	1.52±0.12
35	2.5	12.99	0	8	0.00±0.15	15.86±0.14	-2.48±0.10	13	-7.61±0.15	15.97±0.14	2.43±0.08
36	5	12.99	0	8	2.40±0.09	17.34±0.08	-1.47±0.12	13	-2.41±0.13	14.51±0.13	2.43±0.11
37	10	12.99	0	8	3.79±0.27	12.14±0.12	-2.42±0.11	13	-1.38±0.11	10.77±0.11	1.51±0.16
38	-8.75	15.155	0	8	7.60±0.13	13.08±0.12	-1.49±0.16	13	4 2.39±0.12	14.50±0.17	2.44±0.09
39	-6.25	15.155	0	8	LOIGOLOLL	11.76±0.13	-2.41±0.10	13	5 7.58±0.12	13.13±0.09	1.54±0.13
40	-3.75	15.155	0	8	010010100	17.32±0.10	-1.30±0.09	13	1010010111	7.98±0.16	2.46±0.09
41	-1.25	15.155	0	8	-7.59±0.18	15.91±0.11	-2.46±0.08	13	-10.02±0.10	17.33±0.10	1.54±0.11
42	1.25	15.155	0	9	21101010	17.32±0.10	-1.48±0.12	13	0.1210.10	17.33±0.11	1.49±0.11
43	3.75	15.155	0	9		14.53±0.15	-2.41±0.10	13		14.54±0.15	2.46±0.12
44	6.25	15.155	0	9	2.4410.10	14.54±0.19	-2.46±0.11	14	0.0510.11	15.92±0.15	2.45±0.11
45	8.75	15.155	0	9	71011011	15.93±0.14	-2.47±0.13	14	011010100	14.51±0.15	2.41±0.07
46	0.10±0.14	2.72±0.16	-2.50±0.10	9	10.0010.15	14.58±0.13	-2.49±0.12	14		22.50±0.15	2.47±0.11
47	2.44±0.11	1.33±0.12	-2.52±0.13	9	2.4010.11	1.47±0.10	2.43±0.10	14	3 7.55±0.12	15.99±0.13	2.42±0.10
48	4.93±0.09	0.01±0.11	-1.46±0.16	9	4.87±0.13	2.78±0.24	2.46±0.09				

2. MD simulations in the cases of Cu, Pd, Ni, and Ag

We also performed similar MD simulations by replacing Al (as presented in the main paper) from μ -Al₄Mn with Cu, Pd, Ni, and Ag. We used the embedded atom method potentials for Cu–Cu (Cu_smf7.eam; Foiles, 1985), Pd–Pd (Pd_u3.eam; Foiles *et al.*, 1986), Ni–Ni (Ni_smf7.eam; Foiles, 1985), and Ag–Ag (Ag_u3.eam; Foiles *et al.*, 1986). Figures S1–S4 show typical snapshots of the arrangement for Cu, Pd, Ni, and Ag atoms adsorbed on the A-layer [see Fig. 3].

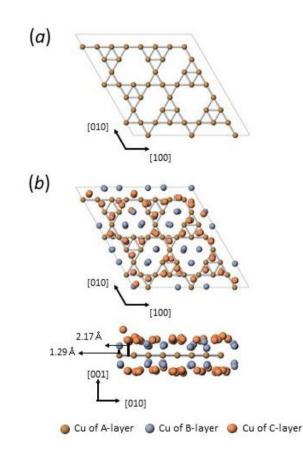


Figure S1. (a) Ball-and-stick view of a close-packed layer of Cu (the A-layer) with atomic vacancies perpendicular to the [001] axis; the configuration depicts data obtained from MD simulations at 800 K (an $8a_0 \times 8a_0$ hexagonal cell with $a_0 = 2.3$ Å). The reddish-brown circles represent Cu atoms in the A-layer. (b) Snapshot of the arrangement of Cu atoms adsorbed on the A-layer after relaxation; the configuration was obtained from a MD simulation at 800 K. The blue and orange circles represent Cu atoms in the B- and C-layers, respectively. All the added atoms were adsorbed onto the A-layer. The different colors represent atoms in different positions along the [001] direction.

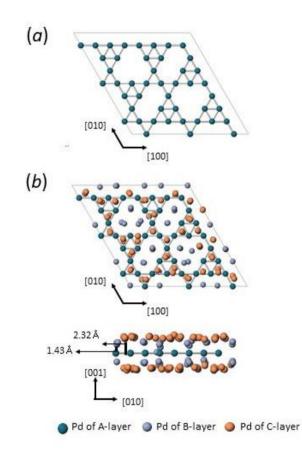


Figure S2. (a) Ball-and-stick view of a close-packed layer of Pd (the A-layer) with atomic vacancies perpendicular to the [001] axis; the configuration depicts data obtained from MD simulations at 1000 K (an $8a_0 \times 8a_0$ hexagonal cell with $a_0 = 2.5$ Å). The blue–green circles represent Pd atoms in the A-layer. (b) Snapshot of the arrangement of Pd atoms adsorbed on the A-layer after relaxation; the configuration was obtained from MD simulations at 800 K. The blue and orange circles represent Pd atoms in the B- and C-layers, respectively. All the added atoms were adsorbed onto the A-layer. The different colors represent atoms in different positions along the [001] direction.

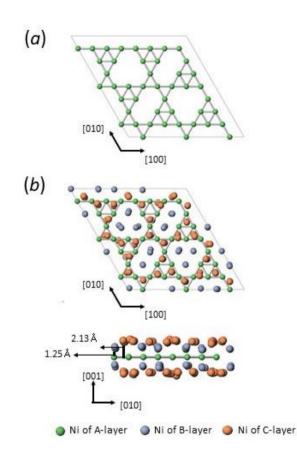
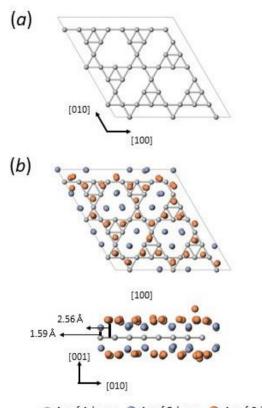



Figure S3. (a) Ball-and-stick view of a close-packed layer of Ni (the A-layer) with atomic vacancies perpendicular to the [001] axis; the configuration depicts data obtained from MD simulations at 1000 K (an $8a_0 \times 8a_0$ hexagonal cell with $a_0 = 2.3$ Å). The light-green circles represent Ni atoms in the A-layer. (b) Snapshot of the arrangement of Ni atoms adsorbed on the A-layer after relaxation; the configuration was obtained from MD simulations at 1100 K. The blue and orange circles represent Ni atoms in the B- and C-layers, respectively. All the added atoms were adsorbed onto the A-layer. The different colors represent atoms in different positions along the [001] direction.

Ag of A-layer Q Ag of B-layer Q Ag of C-layer

Figure S4. (a) Ball-and-stick view of a close-packed layer of Ag (the A-layer) with atomic vacancies perpendicular to the [001] axis; the configuration depicts data obtained from MD simulations at 700 K (an $8a_0 \times 8a_0$ hexagonal cell with $a_0 = 2.5$ Å). The silver-grey circles represent Ag atoms in the A-layer. (b) Snapshot of the arrangement of Ag atoms adsorbed on the A-layer after relaxation; the configuration was obtained from MD simulations at 800 K. The blue and orange circles represent Ag atoms in the B-and C-layers, respectively. All the added atoms were adsorbed onto the A-layer. The different colors represent atoms in different positions along the [001] direction.

References

Foiles, S. M. (1985). *Phys. Rev.* B 32, 7685–7693.
Foiles, S. M., Baskes, M. I. & Daw, M. S. (1986). *Phys. Rev.* B 33, 7983–7991.