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Supporting Information: Autonomous Prediction of
Lattice Parameters from X-ray Powder Di↵raction

Patterns

S1. Supplementary Analysis

S1.1. Sorting a, b, c length parameters

In general, we found that the 1D-CNN models converged more quickly when a, b, c

were first sorted. For crystal systems such as the orthorhombic system, such a trans-

formation is necessary as the label ordering is not unique. For cases where symmetry

conditions required that a = b, the a and b lattice parameters were reported as a+b
2

or c+b
2 , depending on whichever of |b� a| and |c� a| was smaller. For instance, if the

true lattice parameters were [21.01, 21.01, 7.18], then the ML models are trained with

[7.18, 21.01, 21.01] as the label. Now suppose the ML prediction was [7.41, 22.51, 21.11],

then in order to enforce a = b, the prediction is taken to be [7.41, 21.81, 21.81]. Here,

another valid approach is to choose an ordering scheme such that the labels always have

the repeated parameters first: i.e. [a, a, c]. We found that training with this ordering

also gave good predictions, however the 1D-CNN models took much longer to train.

S1.2. Challenges with predicting ↵,�, � angle parameters

We observed that it is di�cult to make good predictions on the angle lattice param-

eters ↵,�, �. We do not understand why this is the case and o↵er two possible expla-

nations to consider in future work. The first is that there are likely many structures

which generate similar di↵raction patterns, even after using a reduced cell case. In

other words, there are multiple local minima around the global minima of the fitting

landscape. If this is the case, potential future work should improve upon the model

formulation. One possibility is to embed a PXRD simulator into the neural network

and use the loss between predicted patterns and the true pattern to train the model.
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This would likely force the model to learn a physical relationship between the lattice

parameters. Such an approach follows a paradigm known as Physics-Inspired Neural

Networks (Pi-NNs) which use di↵erentiable simulators to encode physical constraints

into neural networks.

Another possibility is that the training data overwhelms the model. For the case

of angle predictions, for both the triclinic and monoclinic system, the majority of

structures have angles very close to 60, 90 and 120. This could bias the model to

replicate training data and give incorrect predictions. Future work to investigate this

problem could involve simulating additional structures with a wide range of angles

and determining whether ML based models can be successful.

Due to these problems, in this analysis we do not try to determine the angles for

the monoclinic and triclinic crystals. However, this problem can be alleviated slightly

by using Lp-Search which can help find the correct angles, as long as the length

parameters are initialized well.

S1.3. Null Model Analysis

In this section, we compare the performance of other possible choices for a Null

model for lattice parameter prediction. The first Null model we consider is the mean

Null model which uses the average lattice parameters of the training dataset as the

predicted lattice parameters. A similar model is the median Null model which uses

the median values of the training lattice parameters for the prediction. We also inves-

tigated two models which use the data in order to make a prediction. The first is

the dmax model which uses the d value from the first observable PXRD peak as the

prediction for all three length lattice parameters. The second data based Null model

uses the d value for the c lattice parameter and the mean lattice parameters for a and

b. The performance of each Null model is detailed in Table S1 for each crystal system.
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Table S1. Mean Absolute Percentage Error (MAPE) of various Null models for the length

lattice parameter prediction task. The performance of the Null model depends on the crystal

system under investigation.

Crystal System Mean Median dmax Mean + dmax

Cubic 51.49 47.55 26.03 43.01
Hexagonal 47.37 43.70 48.50 41.32
Trigonal 46.58 58.84 45.50 44.00
Tetragonal 48.77 57.13 45.76 43.56
Orthorhombic 29.94 35.42 41.00 26.41
Monoclinic 24.76 25.70 46.47 25.53
Triclinic 20.06 20.80 61.63 31.12

Unsurprisingly, the data based models perform well for the cubic crystal system case.

However, they are much worse than the data agnostic models for the lower symmetry

cases. In short, the di↵erent Null models are roughly comparable and the performance

of any given model depends on the crystal system.

S1.3.1. Training CNN models on each space group

In this section, we highlight the possible improvements to ML predictive performance

when the space group is known and there is su�cient data in at least one space group

of a given crystal system. Here, we consider space groups within the monoclinic crystal

system since some of these classes still contain a relatively large amount of training

data. We train a baseline 1D-CNN on the monoclinic space group with the largest

amount of training data (Space group 14) and use a transfer learning approach for

the other space groups. Specifically, we initialize neural networks for all other space

groups with the trained weights from the most prevalent space group. This procedure

is a transfer learning technique known as warm-starting and can be used to increase

the speed of neural network training as well as the predictive power on small datasets.

Concretely, since the less prevalent space groups only contain a small amount of data,

the warm-start procedure allows information sharing from the dominant space group

in order to improve predictive power in the small data regime.
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Table S2. Mean Absolute Percentage Error (MAPE) and Percentage Within Bound (PWB)

for 1D-CNNs trained on the top 5 monoclinic space groups.

Space group Number ML Prediction PWB10 PWB5 PWB1 Dataset Size
All 11.79 23.6 5.9 0.0 445708
14 7.44 57.5 21.4 0.2 287663
15 7.79 49.8 16.2 0.2 75703
4 4.74 76.2 40.8 1.3 35330
12 10.64 39.5 13.6 0.4 7333
9 9.36 42.1 12.6 0.1 7275

Based on this analysis, we find that the 1D-CNN models for the top 5 space groups

(by training dataset volume) have lower MAPE and higher PWB1, PWB2, PWB5

than a single model trained on data from the entire monoclinic crystal system (Table

S2). This finding suggests that it is possible to train models for each space group, even

in the small data regime, as long as there is enough data for at least one dominant space

group. Furthermore, it shows a direct path to improving the performance of ML based

models trained on raw intensity profiles. Although, again, it is worth emphasizing

that this approach requires more prior knowledge than knowledge of just the crystal

system. Nevertheless, we expect this type of analysis to be useful in combination with

other CNN based models which seek to predict the space group directly from raw

intensity arrays (Park et al., 2017; Vecsei et al., 2019; Oviedo et al., 2019; Suzuki

et al., 2020; Tiong et al., 2020).
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S2. Supplementary Methods

S2.1. Dataset Description and Simulation

PXRD patterns were simulated from CIF files contained in the ICSD and CSD

databases using the CSD Python API (Groom et al., 2016). CIF files were filtered such

that only unique, crystalline structures were kept; two structures were designated as

di↵erent if they had either a di↵erent chemical formula, space group or set of lattice

parameters. Each pattern was simulated in the range [0, 90] in 2✓ with a spacing of

0.01 and an incident wavelength of 1.540 56 Å. These choices correspond to a q range

of [0, 6] Å�1. All patterns were normalized such that the intensities were in the [0,1]

range. The chosen peak shape was pseudo-Voigt with a Full-Width Half Max of 0.1

2✓ and a mixing parameter of 0.5. In total, 961960 patterns were simulated.

S2.2. 1D-CNN Architecture, Training Time and Hyperparameters

In the experiments involving the full 0-90 range, we used the 1D-CNN model

described in Table 1. For the 0-30 range, we used the same model and removed the

first max pooling operation which reduced the dimensionality of the inputs by a fac-

tor of 3. The intention of this procedure was to keep the number of neural network

parameters the same to facilitate comparison between the two ranges. In addition, the

same hyperparameters were used for all experiments. Specifically, the following values

were used: learning rate = 0.001, loss = Huber, batch size = 64, Adam optimizer

with �1 = 0.9 and �2 = 0.999, and Glorot initialization. To select the final model,

we performed coarse hyperparameter optimization and considered CNN architectures

with variable layer, filter and pool sizes as well as models with skip-connections and

batch-normalization. We found that di↵erent models worked better on di↵erent crys-

tal systems. In order to keep the analysis simple, we chose to use the same model for

all crystal systems.

IUCr macros version 2.1.10: 2016/01/28



6

Models which required data augmentation were trained on a CPU with a 2.3 GHz

8-Core Intel Core i9 processor using 16 GB RAM. Model training took approximately

10 hours for the largest training set. Models without data augmentation were trained

using 1 GeForce RTX 2080 Ti GPU. Training took approximately 1 hour for the

largest training set.

Two custom metrics were used to evaluate our models: Mean Absolute Percentage

Error (MAPE) and Percentage Within Bound (PWBX). MAPE, measures the mean

absolute percentage di↵erence between [a, b, c]true and [a, b, c]predicted. PWBX is the

fraction of examples for which each of the true lattice parameters lie within a X%

bound of the corresponding ML predictions. For example, PWB50 is the percentage

of testing examples for which each of the true lattice parameters lie within 50% of the

corresponding estimated lattice parameter. All models were defined using the Keras

Tensorflow API (Chollet et al., 2015).

S2.3. Description of modification Schemes

Some of the analysis in this paper involved the application experimental modifica-

tions to either or both of the training and testing sets. In general, data modification

(augmentation) is widely used in ML to improve the generalizability of ML mod-

els (Perez & Wang, 2017). In contrast to previous work (Oviedo et al., 2019; Park

et al., 2017), but consistent with general deep learning guidelines, experimental mod-

ification in this analysis is applied during training to each minibatch of data.

• Random Intensity Modulation: Each 100 1D-pixel region (90 regions for
each pattern) is scaled by a constant factor uniformly drawn from -30% and
30%. Blocks of regions were chosen in order to add more systematic noise as
well as to speed up the computational implementation. This modification is
intended to coarsely mimic preferred orientation e↵ects.

• Linear Combination of Phases: Up to three extra random PXRD patterns
are added to each input. The exact number of impurities is drawn from a discrete
uniform distribution for each training point. Specifically, each dominant powder
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pattern may have 1, 2 or 3 additional weaker intensity patterns. The impurities
are scaled by a uniform number 2 [0.05, 0.1]. This ensures that no impurity peak
has an intensity greater than 1/10th of the largest peak in the main structure.
This modification is used to simulate the e↵ect of low intensity impurities. In
this analysis, the impurity PXRD patterns were selected randomly from any
possible crystal system. For example, under this model, it is possible to have a
dominant cubic phase, and a number of low symmetry impurities.

• Gaussian Baseline Noise: For the general modification experiments, the fol-
lowing noise model was used: x ⇠ N (0, 1)U(0, 0.002). This model chooses a
random noise from a uniform distribution between 0 and 0.002 and modulates
this noise by a standard normal distribution. This modification is intended to
simulate detector baseline noise. For the investigation of increasing background,
gaussian noise is drawn from the distribution x ⇠ N (0, noise level

3 ). This ensures
that the noise is below the specified noise level threshold 99.7% of the time.

• Gaussian Peak Broadening: A gaussian filter with �2 uniformly sampled
from [1, 5] is applied to the full PXRD pattern. Here, all data in one minibatch
experiences the same broadening factor. This simplification greatly increases the
implementation speed. This modification simulates both sample and detector
e↵ects.

• Detector Zero-shift: A random uniform shift between [-15, 15] 1D-pixels is
applied to every peak in a given PXRD pattern; this corresponds to a [-0.01,
0.01] shift in q and a [-0.17, 0.17] shift in 2✓. This modification is also applied the
same to all examples within one minibatch. This modification simulates detector
o↵set.

S2.4. Model Training and Testing

For the analysis of the combined ICSD/CSD datasets, datasets of sizes 32705, 19842,

27784, 39183, 163087, 447708, 245651 were simulated for the cubic, hexagonal, trig-

onal, tetragonal, orthorhombic, monoclinic and triclinic crystal systems respectively

according to the procedure in Section S2.1. Models were trained to predict the a, b, c

lattice parameters. In order to stabilize the training procedure, the a, b, c were first

sorted. The dataset split was such that the testing and validation sets each had 1000

entries. All models were trained for 50 epochs with an early-stopping patience of 20.

The MAPE metric was used to select models.

For the experiments involving realistic non-idealities, in order to isolate the e↵ect of

one particular experimental modification all other modifications were turned o↵ during
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training and testing. Furthermore, for the particular experimental modification, we

controlled the four following combinations of training and testing on data with and

without the added condition. Note, the experimental modifications applied during

training and testing have a random element. For this reason, when testing on any

dataset which used experimental modification, the results were averaged over 100

independent predictions on the testing set.

S2.5. Volume of Search Space

Models trained on ICSD/CSD data, with no experimental modifications, were used

to quantify the reduction in parameter search space volume (VR) obtained using ML

for 1000 testing examples from ICSD/CSD. The VR is calculated as:

VR =
Default Search Space Volume

ML Search Space Volume
(1)

The default search space volume is first calculated by determining the range [3, 2d

max]. Here, d max is calculated by calculating all d spacings consistent with a given

crystal system and lattice parameters. The ML search space volume is calculated by

determining [amax� amin], [bmax� bmin], [cmax� cmin] which are the edge values of the

X% bound around the predicted a, b, c lattice parameters. Thus, the VR is written

as:

VR =

8
>>>>><

>>>>>:

|2dmax�3|
(amax�amin)

, ; a = b = c

|2dmax�3|2
(amax�amin)(cmax�cmin)

; a = b 6= c

|2dmax�3|3
(amax�amin)(bmax�bmin)(cmax�cmin)

; a 6= b 6= c

Note, the minimum and maximum values depend on the bound chosen for the ML

prediction. For clarity, a subscript is added to V R to indicate the bound. In this
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analysis, VR5 and VR10 are reported.

S2.6. Lp-Search

The 1D-CNN models used for the VR calculations were used to make predictions

on 3 structures within the testing data corresponding to a high symmetry system, a

low symmetry system and a dominant zone system (Table 10). These predictions were

used to calculate the corresponding [amax�amin], [bmax� bmin], [cmax� cmin] for a 10%

bound and a 50% bound. These ranges, the corresponding PXRD patterns, and the

lowest symmetry space group compatible with correct crystal class were input into

Lp-Search. A heuristic unit-cell volume range [0.5abc, 1.5abc] was also specified for

each PXRD pattern. The minimizations were terminated if the Rwp < 2 and the total

unit-cell volume was correct to within 1% or if the algorithm reached 50000 iterations.

Experiments were repeated 20 times and average time and fraction of times converged

were reported. The ML+Lp-Search analysis was compared against a baseline where

3� 2dmax was used for the initial Lp-Search range.

S2.7. ML+Lp-Search for Experimental Data

For the experimental data validation on synchrotron data from SSRL, a sequen-

tial procedure of ML and Lp-Search was used. In order to make ML predictions, the

SSRL dataset was baseline corrected and converted to the q range 0 to 6 to match

the ICSD/CSD data. For non-zero baselines, we used the dual-tree complex waveform

algorithm for autobaseline removal (René de Cotret & Siwick, 2017). In addition,

the data was linearly interpolated, where required, to match the input length in the

ICSD/CSD data. This step was necessary since the 1D-CNN models in our analysis

only accept a fixed size input. For each experimental pattern, the Lp-Search mini-

mization procedure was run with the following percentage bounds: 10, 30 and 50%
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bound. For each bound, the algorithm was run for 5000 iterations and the solution with

the lowest Rwp was chosen. Lattice parameters from ML+Lp-Search were compared

directly against the ground truth unit-cell solution.
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S3. Supplementary Data

In Figures S1-S3 we plot the PXRD patterns for the Examples 1-3 (Table 10) on a

square-root intensity scale.

Fig. S1. PXRD pattern for Example 1. This corresponds to a cubic structure with
lattice parameter [8.292]. The example was intended to be a simple high-symmetry
structure.

Fig. S2. PXRD pattern for Example 2. This corresponds to a triclinic structure
with lattice parameters [11.2927, 13.455, 37.9436, 83.672, 89.873, 80.841]. The exam-
ple was intended to be a relatively challenging low-symmetry structure.
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Fig. S3. PXRD pattern for Example 3. This corresponds to a hexagonal structure with
lattice parameters [13.1144, 13.1144, 57.64]. This example exhibits the dominant
zone problem and is challenging for conventional indexing methods.
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