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1. Computational methods

1.1. Setting up atom probe crystallography workflows with PARAPROBE

Input and prerequisities In this section we will describe the workflow that we used
with the initial version of the tools. All results for the main paper were computed using
this version. The workflow has been simplified in the updated version of the tool. Users
should consult associated Jupyter notebook examples on how these new tools can be
used for programmatic crystal structure characterization using PARAPROBE. Setting
up a workflow to the analyses in the main paper starts with defining four ingredients:
a dataset (synthetically created or a reconstructed dataset from an APT experiment),
ranging definitions, i.e. rules how to map mass-to-charge-state ratios to atom types,
an ensemble of regions-of-interest ROIs, and a set of crystal structure candidates
with individual definitions along which crystallographic directions one wants to probe,
and hence which region(s) of the amplitude spectra to investigate. We worked with
synthetic datasets as well as datasets from real APT experiments. Synthetic datasets
were created using the paraprobe-synthetic tool (Kiithbach et al., 2021). The synthetic
datasets were on the one hand used to build the datasets for verifying the tools and
on the other hand used to compute the reference signatures for single crystals with
specific crystal structure and orientation.

For processing experiments we imported reconstructed atom positions by transcod-
ing either POS or EPOS files, respectively from The Integrated Visualization and
Analysis Suite (IVAS) (Ulfig et al., 2017; Reinhard et al., 2019) into a Hierarchi-
cal Data Format (HDF5) file representation as it is required for PARAPROBE. For
this task we worked with the paraprobe-transcoder tool. For ranging, PARAPROBE
accepts ranging data and definitions that have been made with external tools from
the APT community. Such ranging data define how to map from mass-to-charge-state

ratios to (molecular) ion types. For ions that are composed of isotopes of a single

IUCr macros version 2.1.11: 2019/01/14



3
element (the case in this work) we treat ion types to be equivalent as atom types. For
molecular ions a so-called atomic decomposition can be applied to map an ion type
to a specific atom type provided an isotope of the requested target element is a com-
ponent of the molecular ion. Specifically, we worked with the import functionalities of
the paraprobe-ranger tool and read RRNG files, which is a common human-readable
text file format used by atom probe microscopists to communicate ranging results.
The ranging was created by the respective APT experimentalists within IVAS. The
definition of the ROI ensemble and the crystal structure candidates is detailed in the

main paper for each respective case study.

Workflow Quantifying crystallographic signal and indexing it via PARAPROBE is
realised with a sequential workflow of PARAPROBE tools. Individually, these tools

use parallelisation. The steps for the real space method were as follows:

1. We synthesise synthetic datasets for the crystal structure candidates, range
these, and characterise their atomic architecture. Thereafter, we evaluate the
amplitude spectra for each spatial distribution map (SDM) and decide which
lattice plane stack to analyze. Based on this we decide which region of the
amplitude spectra we need to probe and compose into signatures:

(a) paraprobe-synthetic,
(b) paraprobe-ranger,
(c) paraprobe-surfacer,
(d) paraprobe-araullo.

2. The analysis for the dataset to be indexed uses the above-created reference

signatures for the crystal structure candidates:
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(a) paraprobe-transcoder or paraprobe-synthetic, respectively depending on

whether data come from experiment or are synthetic,
(b) paraprobe-ranger to accept the external ranging for the dataset,
(c) paraprobe-surfacer to compute the distance of the ROI to the dataset edge,
(d) paraprobe-spatstat to optionally characterise spatial statistics,
(e) paraprobe-araullo to compute the signatures for all ROIs,

(f) paraprobe-indexer to index the signatures against the rotated references

for the crystal structure candidates.

Figure 1 summarises the resulting workflow and how the real space and reciprocal

space methods, respectively are integrated into this workflow.
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Fig. 1. Proposal for an automated workflow for indexing crystal structure and backing
out crystal orientations locally. Thicker arrows follow the main steps of the workflow
from the creation of a synthetic or the importing of a reconstructed dataset from
an experiment to the acquisition of the signatures. RSP abbreviates the real space
method. FSP abbreviates the reciprocal space method. Instead of a monolithic
software, we connect multiple specialised tools (blue boxes) into a workflow. The
analysis steps are controlled through XML configuration files. All heavy data are
carried through the processing with HDF5 files.

The GitLab repository of PARAPROBE (Kiihbach, 2020) comes with a set of
Jupyter notebook tutorials which exemplified further details of this workflow. Users
should inspect the latest version of PARAPROBE and the corresponding tutorial as

the proof-of-concept implementation has been modified during the revision of the main

paper.
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1.2. Implementation details

Assuring that ROIs are completely in the dataset To assure this, we first
binned each dataset into 10 A cubic voxels. Then, we identified the interior voxels
using methods previously described (Kiithbach et al., 2021). Regions-of-interest (ROIs)
were placed only in such voxels. In addition, dense a-shapes of the point cloud were
computed (Kiithbach et al., 2021). The resulting triangle hulls were evaluated for inter-
section with the ROIs. Only ROIs without intersections with the a-shapes were used.

In combination, this ensures that the ROIs are fully embedded in the dataset.

Why geodesic spheres instead of a regular gridding of elevation/azimuth?
Multiple strategies exists to define along which projection directions one probes for the
real space method. Compared to a regular gridding of the elevation-azimuth space, as
it was proposed in (Araullo-Peters et al., 2012), we work with a geodesic sphere finite
element mesh because it distributes the nodes more homogeneously over the surface

of the unit sphere (Popko, 2012).

Controlled windowing of the spatial distribution maps (SDMs) We used
a different binning strategy than the original authors (Araullo-Peters et al., 2012)
for preparing the SDMs before computing their fast Fourier transformations. Specif-
ically, we pad the histogram on either side by one bin with zero counts to enable for
any implementation of controlled signal windowing (Prabhu, 2013). In this work, we
used a rectangular windowing function. Alternatively, Kaiser windowing could be used

(Kaiser & Schafer, 1980) for instance.

Creation of test orientations for rotating the reference signatures We
worked with a quasi-equidistant grid of test orientations in orientation space G with

members g € G € SO3 using the MTex texture toolbox (v5.0.3) for Matlab (Bachmann
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et al., 2010b; Bachmann et al., 2010a). Crystal symmetries were accounted for (%3%)
The angular resolution of the grid was 1°, resulting in a total of N, = 618324 orienta-
tions. The rotations are evaluated in a pre-processing stage to build a library of rotated
references (for each crystal structure candidate). Orientation differences were quan-
tified using classical disorientation-based algorithms (Grimmer, 1974; Heinz & Neu-
mann, 1991). Also these were implemented for cubic crystal symmetry only. General-
izations for lower symmetry crystal structures have been reported (Bonnet, 1980; Heinz
& Neumann, 1991; Morawiec, 2004). The disorientation quaternion in this work is

defined as a particular misorientation quaternion in the fundamental zone with the

smallest rotation angle.

Indexing algorithm Running the real space method, which is referred to as RSP
in the main paper, for an ensemble of ROIs yields a collection of spherical images,
i.e. the signatures S;**" for each c-th crystal structure candidate. During indexing we
evaluate nodal intensities using the paraprobe-indexer tool (Fig. 1). Indexing has three
pre-processing and one indexing step. First, the intensities of the S7**" signatures and
the rotated references S¢ (signatures for the crystal structure candidates rotated by
g) are normalised individually. The index ¢ denotes the test orientation. Second, a
user-defined sub-set of the FE nodes is defined (here N, = 1000) for each reference.
We pick those nodes for which the signal is strongest. Third, orientation set G is used
to rotate each of the N, FE nodes and compute its closest neighbouring node DY
The index v denotes a particular of the strongest intensities in decreasing order.

The result of the pre-processing steps is a look-up table. This look-up table encodes
implicitly which nodal values of the signatures for the ROIs, i.e. S7**", have to be
inspected to compare them with a specifically oriented version of a rotated reference.
In effect, indexing reduces to a querying and comparing of image intensity values at

pre-computed nodes. The difference AY is quantified as the sum of squared image
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intensity differences (Eq. 1). For each rotated reference in orientation g and each
crystal structure candidate ¢ we get one value for each ROI.

Clo

Ny
Ag=d (S, =88 (1)
v=1

Py,c

Other descriptors could be used to quantify the differences between signatures. One
of which is computing the cross-correlation between the signatures. Using this descrip-
tor would result in higher numerical costs, though, because eventually all intensity

values have to be compared.

Analytical intersection volume We state in the main paper to have developed
a numerical exact method for computing the intersection between a spherical ROI
and an arbitrarily shaped and oriented polyhedron. In this work, the polyhedra are
the Poisson-Voronoi cells from the polycrystal construction that we interpret as the
grains of the polycrystal. To the best of our knowledge there is no analytical formula to
compute such intersection volume for arbitrary spatial arrangement of the geometric
primitives.

However, there is a numerical method for computing the exact intersection volume of
a sphere cutting an arbitrary tetrahedron (Strobl et al., 2018) to within floating point
precision. Recall, that one can decompose a convex polyhedron into a set of tetrahedra.
In our case, we can thus decompose the volume of each Voronoi cell completely into
a set of tetrahedra (constrainted tetrahedralization). These tetrahedra are boundary-
conformant with the piece-wise linear complex that is represented by the faces of the
Voronoi cell (Si, 2015). In effect, this enables a computation of the intersection volume
between the ROI and each tetrahedron. This allows us to accumulate the individual
values for ROI-sphere-tetrahedra-intersections to obtain a total intersection volume

between a spherical ROI and each Voronoi cell of polyhedral grain k.
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Sequential implementation tricks The numerical costs for computing fast Fourier
transforms of the real space method are reducible with numerical libraries such as the
Intel Math Kernel Library (Intel, 2019) or The Fastest Fourier Transform in the West
(FFTW) (Frigo & Johnson, 2005) for the CPU, and cuFFT (Nvidia Corporation, 2019)
for the GPU, respectively. Conjugate-even symmetry was assumed to reduce further
the costs of the Fourier transformations. Single precision was used where possible.
All data were packed into contiguous pieces of memory to reduce memory traffic and
cache misses. Although we have not explicitly implemented it, one could also exploit
that all histograms (SDMs) for a ROI have the same number of bins. In principle,
this enables a batching of all the Fourier transformations for a ROI. Thereby, one can
further reduce the numerical costs for loading intermediate values. We queried atoms

for each ROI via multi-threading using Open Multi-Processing (OpenMP) commands.

1.3. Analysis of asymptotic computational costs

Real space method The numerical costs of the real space method are defined
by four quantities: the number of ROIs N,,; in the ensemble, their radius R, the
number of SDMs per ROI N,, and the number of bins per SDM N, = 2™. For a
dataset of volume V' with homogeneous density of a single atom type p, and f being a
geometrical constant, the average number of atoms in a ROI is N,, = fR3p. Therefore,
the asymptotic computational time complexity of collecting crystallographic signal

with the real space method is:
Oproj = Nyoi - [fR?p - 10g(V p) + N[Ny + 0.5N,10g(0.5Np) + 0.5N,)]. (2)

The summation terms account for the querying, the projecting, the Fourier trans-
forming, and the peak identifying from the amplitude spectrum. Here we assume an
algorithm with tree-based neighbour querying (Kiihbach et al., 2021) and amplitude

spectra analysed within a selected frequency interval. Despite the numerical complex-
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ity, there is substantial potential for parallelising those computations. In fact multiple
computations are independent: each ROI, each direction, and the peak search for each

amplitude spectrum. Our implementation is the first which taps this potential.

Reciprocal space method For the reciprocal space method we probed cubic sub-
regions in reciprocal space at reciprocal space positions k. Different resolutions were
probed (Lp = 64 to 512 for k € [—2m, —|—27r]3). The asymptotic computational time

complexity of the reciprocal method is:

O(Nroi “ Ny - £D3)a (3)

where N, is the number of atoms in the ROI. Given the resources available in 2001
(Vurpillot et al., 2001), this rendered routine application of the method impractical.
However, the computations are independent for every ROI and have low summation
costs for every atom w and every reciprocal space position k. In combination with the
CPU and especially GPU hardware improvements in the last 20 years (Hennessy &
Patterson, 2012; Rauber & Riinger, 2013; Reinders & Jeffers, 2014; Jeffers & Reinders,
2015), this makes the proposal and method of Vurpillot et al. potentially attractive

again for quantifying crystallographic signal.

Indexing Our implemented indexing method has a computational time complexity
with two key contributions: a constant look-up table creation cost O, and indexing
costs O;q,. The creation costs are Oy, = N.- Ny - Nv, in which Nv is the number of FE
nodes at which image intensities are evaluated and N, the number of crystal structure
candidates. The indexing costs are O;q; = Nyoj - Ne - Ny - Nv. Both contributions offer
substantial potential for parallel execution. The computation of a look-up entry is an
independent task per entry. Equally, each ROI is independent and at this level also

each orientation and phase candidate.
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1.4. Soft- and hardware details

These methods were implemented as additional tools (paraprobe-araullo, paraprobe-
fourier, paraprobe-indexer, paraprobe-intersector) into the open-source PARAPROBE
toolbox. The tools were compiled with the Intel (v18.0.5.20180823) compiler using
Skylake CPU-specific optimisation. Algorithms from the Computational Geometry
Algorithms Library CGAL (The CGAL Project, 2018; Da et al., 2018; Kiithbach et al.,
2021) (v4.11.3) and Boost C++ (Schéling, 2014) (v1.66) were employed. When using
the GPUs, code was compiled with the PGI (v19.10-0 LLVM) compiler (Portland
Group Inc., 2020) using Skylake CPU-specific and GPU-specific optimisation for the
Nvidia Tesla GPU architecture. OpenACC and CUDA commands were compiled using
CUDA v10.0.130. All tools were linked against the Intel MPI library (v2018.4). I/O
operations were executed via the sequential HDF5 library (v1.10.2) (Prabhat, 2014;
The HDF Group, 1997-2020).

The analyses were executed on the TALOS computing cluster, a SUSE Linux Enter-
prise Server 15.1 SP1 system with 80 accessible computing nodes. Each node has two
Intel Xeon Gold 6138 twenty-core processors with access to 188 GiB main memory in
total. Furthermore, each node is equipped with two Nvidia Tesla Volta V100 (Nvidia
Corporation, 2017) accelerator cards with 32 GB memory each.

The Message Passing Interface (MPI) library (Gropp et al., 1998; Gropp et al.,
1999b; Gropp et al., 1999a) was used to distribute ROIs across computing nodes at
the coarse scale. At the finer scale, ROIs were delegated to Open Multi-Processing
(OpenMP) (Chapman et al., 2007) threads. The OpenMP threads were pinned to
specific cores using OMP_PLACES=cores and executing one MPI process per node. In
cases were the tools used the CPUs and GPUs, both GPUs of each node were utilised.
Each GPU was instructed by one MPI process. Each MPI process spawned for this one
OpenMP thread. All resources were used exclusively. The figures were generated using
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Paraview (Ayachit, 2015) and Python. Analyses employed single precision, except for
TetGen where double precision was employed.

Explicit calls to the MPI_Wtime and omp_get_wtime functions were made to mon-
itor how much elapsed time the individual workflow steps took. I/O and non-I/O
operations were distinguished. Two system variables were parsed on-the-fly to quan-
tify virtual and resident main memory set sizes. These pieces of information were

parsed from the /proc/self/stat system file.

1.5. Reconstruction of the experimental datasets

Aluminium bicrystal We used the following reconstruction parameters:
e Image compression factor ICF = 1.53,
e Field factor ky = 4.91,
e Flight path length L, = 100 mm,
e Detection efficiency n = 0.8.

For the real space method we computed N, = 40962 SDMs per ROI with m = 8
binning. The signatures S;**" were composed by assigning each node the highest ampli-
tude of the its corresponding amplitude spectrum in the bin interval corresponding to
+1.823 A t0 2.230 A. Conceptually, this is equivalent to an indexing where one probes
for all six crystallographic directions (100). In total N, = 1000 nodes were evaluated
during indexing. Solutions up to the 1000-th closest candidates were computed for
each IV;. Although reporting a single solution, like the one with the lowest image dif-
ference would be sufficient, we inspected such a large number of solutions to explore

where the indexing fails and to understand this systematically.

Al-Li-Mg specimens The Al-Li-Mg-Ag dataset contained 45.17 x 10° ions of which
a fraction of 4.96 % were ranged as lithium and 4.04 % as magnesium, respectively.

Amplitude spectra to build signatures for the aluminium crystal structure candidate
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were probed on the bin interval corresponding to +1.823 A to 2.223 A lattice spacing.
Amplitude spectra to build signatures for the AlsLi crystal structure candidate were
probed on the bin interval corresponding to +1.805 A to 2.206 A lattice spacing. This
corresponds to indexing based on the (200) plane stacks of the respective sub-lattices.
The same indexing settings as for the aluminium bicrystal dataset were set but now
compared to three instead of one reference pattern: one reference defined by a pure
aluminium crystal and two for the aluminium and the lithium sub-lattices of a AlsLi

single crystal respectively.

2. Additional results

2.1. Robustness of the real space method against randomly missing atoms

Figure 2 reports how the signatures computed from the perfect single crystals change
when randomly removing atoms from the lattice. The results show descriptive spatial
statistics for all ROIs and SDMs. The very low spread of the quantile values docu-
ments that the signatures of every ROI have peaks of similar intensity (=~ 1.0). The
background is in all cases at least ten times lower in intensity. The observation that the
spread is similar for all n values substantiates a robustness against a random removal

of atoms.

IUCr macros version 2.1.11: 2019/01/14



14

100 n=1.00 .
. n=0.75

n=0.50
I n=0.25

10714 -
- =

2"d strongest peak intensity (a.u.)
Ib

T
—

Min 010 050 090 099 0.999 Max
Specific quantile

Fig. 2. Quantification of the real space method signal against noise due to missing
atoms. For each ROI, we identified the peaks in all amplitude spectra and report
the individually second strongest peak per amplitude spectrum. With N, FE mesh
nodes, i.e. N, directions, this yields one cumulative distribution per ROI. Next,
specific quantiles of the cumulative distribution are extracted for each ROI and
displayed for the entire ROI ensemble. This condenses the statistics of how all
amplitude spectra (40962 per ROI) for all ROIs (10000 in total) differ. We repeat
this statistical analysis for all  values (the fraction of atoms remaining). The results
show that the signal-to-noise ratio is not substantially affected by removing atoms.

2.2. Influence of the ROI radius and frequency resolution

Verification analyses on the same synthetic datasets but using larger radii for the
ROIs did not improve the indexing quality for the noisy datasets. In fact, the exem-
plar SDM in Fig. 4 and corresponding amplitude spectra in Fig. 3 summarise that
up-scaling the ROI only increases the total number of counts in the SDMs; i.e. the

significance improves but the peaks get not better concentrated.
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Fig. 3. Effect of up-scaling the radius of the ROIs for a fixed frequency resolution
% = 6.351/A and increasingly stronger positional noise. The left column a), c),
e) displays exemplar SDMs for R = 20 A. The right column b), d), f) displays SDMs
for the same projection direction in a), c), €) but a larger ROI radius R = 80 A,
respectively. Up-scaling the ROI increases the significance of the histogram but does

not better concentrate the peaks.
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Fig. 4. The amplitude spectra for the above histograms support that an up-scaling of
the ROI increases only the significance of the SDMs but does not better concentrate
the peaks.

IUCr macros version 2.1.11: 2019/01/14



17

2.3. Statistical analysis of the signatures for the aluminium bicrystal

We summarise in the main paper that it is possible to detect regions in the datasets
with significant crystallographic signal. Figure 5 documents the results of a successful
protocol for performing a local refinement of the ROI grid. Figure 6 supports these
results with a statistical analysis of the signal strength and the number of atoms per

ROL

CSmyeo 4 e

Fig. 5. The local ROI grid refinement allows to explore specifically those regions in
the dataset more efficiently where the chance for successful indexing are best. The
upper figure displays a coarse regular ROI grid (see explanations below). The lower
figure displays signature-specific results for the environment of the refined ROIs.
Different colours distinguish different signatures ({002} in dark blue, {220} in
green, and {111} in orange, respectively).

Such a local grid refinement works for example as follows: First, we scanned the
dataset with a coarse resolution, here using (20 A)S. Approximately 1.0 x 10° ROIs

were obtained as Fig. 5a) displays (with the ROIs rendered to scale as grey spheres).

Intensities were evaluated individually for each ROI. Next, we filtered out, for each
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pole ({h k1}) separately, those ROIs whose maximum image intensity was at least 0.75.
Finally, we performed a grid refinement for these ROIs (0.5nm?). In effect, between
4.0 x 103 to 8.3 x 10* now more closely spaced ROIs were characterised. The dataset
volume in Fig. 5b) shows that these ROIs probe different regions of the dataset. By
contrast, a naive grid refinement of the coarse grid would have resulted in 64 times
more computations, so our local refinement is at least one order of magnitude more

efficient.
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Fig. 6. Statistical analysis of the signal strength for three different poles {002} (upper
row), {220} (middle row), and {111} (lower row), respectively. We performed an
analysis with an adaptive grid and compare how many atoms are included in a
ROI and how high the signal intensities correlate with this atom count for each
ROI. Specifically, we compare results for two ROI grids - a coarse one, or initial
grid, respectively (left column) and a fine one, first refinement, respectively (right
column). These results supplement and substantiate the findings to the aluminium
bicrystal case study in the main paper. There are several regions in the dataset

with strong crystallographic signal.
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2.4. Statistical analysis of the signatures for the Al-Li-Mg-Ag dataset

We performed the above statistical analyses with grid refinement also for the Al-
Li-Mg-Ag dataset. The same poles as the ones above were analysed but now two
signatures computed for each {hkl} - one signature for the aluminium and one for
the lithium sub-lattice, respectively. Figure 7 shows the results, exemplified for {002}

signatures.
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Fig. 7. Statistical analysis of the signal strength for {002} signatures. The upper
row shows statistics for aluminium atoms and compares the coarse (results to the
left) with the fine grid (results to the right, using the same thresholding of image
intensities like in Fig. 6). Below is the result for the coarse grid and {002} signatures
computed based on the lithium atoms. For further methodological details see text
and explanation of the figure above. The results support the conclusion of the main
paper that finite counting effects can result in strong peaks and have to be carefully
separated from ROIs with more significant signal. The lower the number of atoms
in a ROI is the noisier and eventually even skewed the SDMs become. When fast-
Fourier-transforming these SDMs, this translates into high peaks in the amplitude
spectra, i.e. high image intensities in the signatures. This is especially pronounced
for ROIs which contain less than a few dozen lithium atoms.
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2.5. Benchmarking: reasons for limited scalability

There are multiple reasons for limited scalability: 10000 ROIs cannot be equally dis-
tributed on 3200 CPUs cores. In effect, work load differences limit the scalability. In
addition, there are a few code portions that remained sequentially executed. A detailed
analysis of the elapsed time data showed that there are costs of synchronisation bottle-
necks. These could be worth a future inspection and software optimisation. However,
reducing these bottlenecks will require efforts and implementation techniques that are
beyond the interest and toolkit of most atom probe practitioners and should therefore

not be pursued here.

2.6. Preliminary analysis of compressing signatures with spherical harmonics

In what follows, we summarise the mathematical details of the discussed spherical
harmonics compressing. First, we discretised a unit sphere into a geodesic sphere finite
element mesh to allow for a mesh of near equal-area elements and a near constant
density of nodal points per unit surface area. The spherical image (the signatures)
to be fit is evaluated at the nodal points, resulting in a vector of values, {e} (length
n", the number of nodes on the geodesic mesh). A set of spherical harmonic modes
are similarly defined at the nodal points of the geodesic mesh, given as {H k} (length
n™). With the spherical harmonic modes defined, the spherical image is described via

a series expansion:

nh

{e} = > v {E"}, (4)

k=1
where n” is the number of harmonic modes in the series expansion. To solve for the

k

weights, w”, a method of least squares is used:

[H]" [H] {w} = [H]" {e} (5)
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Here, {w} is a vector of the weights of the series expansion (length n"), and [H] is a

h

matrix of dimension n™ x n', constructed of nodal values of each harmonic mode:

1= ({0} e ) ) o

The resulting vector of harmonic weights yields a reduced-order description of the
spherical image. We discuss in the main paper that the spherical harmonics approach
captures the location of the peaks. However, it smears out the intensity substantially.

The QQ plot in Fig. 8 quantifies this visual impression.
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Fig. 8. Approximating signatures of the aluminium single crystal synthetic datasets
with a series of spherical harmonics. Peak positions are in principle captured but
the intensities remain smeared out even for a very large number of modes.
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