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1 Supplementary Information

1.1 Deriving the Fisher Information

1.1.1 Notation

N Number of bins or equivalently, data points
M Number of model parameters
λi Expected neutron counts in bin (parameter) i

λ = (λ1...λN ) Vector of expected neutron counts in all bins (parameter)
τθ Time recording at experimental condition θ, e.g. angle, contrast
µiθ Incident flux in bin i for condition θ (parameter)
gz Fisher information for parameterisation z
ξj Parameters of the structure model

ri(ξ) Reflectivity for bin i from model with parameters ξ
X Random variable describing a full measurement of N points

xi ∈ Xi Neutron count in bin i
p(x; z) Probability distribution for measurements x, parameterised by z

Pr([event]) Probability of event
si Total number of incident neutrons in bin i

1.1.2 The Model

In reflectometry, a model describes the reflectivity at a given neutron momentum transfer. These
momentum transfer values are binned with the measured number of neutrons in bin i being given
by

λi = risi(τ) (1)
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where si is the number of neutrons incident in bin i. si is a function of the number of incident
neutrons in the ith bin at each experimental condition, µiθ, and the time each condition is measured
for τθ.

si(τ) =
∑
k

τkµik

and so
λi(ξ) =

∑
θ

ri(ξ)τθµiθ

1.1.3 Fisher Information about the λ coordinates

The probability distribution of the measurement in one bin is Poisson distributed

Pr(Xi = xi;λi) =
e−λiλxii
xi!

and the corresponding Fisher information (FI) for this bin, with respect to λi, is

gλi = 1/λi = 1/E[varXi]

The probability distribution for the whole measurement is, by independence

Pr(X = (x0...xN )) =
∏
i

Pr(Xi = xi)

and the corresponding FI with respect to λ is

gλjk =

{
gλk if j = k
0 otherwise

i.e. a diagonal matrix with values of gλi which happens to equal (in this case, but not in general),
E[covX]−1.

1.1.4 Fisher Information about the ξ coordinates.

In general, we can transform the FI using tensor transforms, i.e.

gZij = gYab
∂ya
∂zi

∂yb
∂zj

So, the FI in terms of ξ is just

gξij = gλab
∂λa
∂ξi

∂λb
∂ξj

To get the FI as a function of τ , we take the derivative of equation 1 with respect to ξ which gives
us

∂λi
∂ξj

= si(τ)
∂ri
∂ξj

(2)
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The derivative ∂ri
∂ξj

is obtained from the model alone (irrespective of the data); it is the derivative

of the reflectivity for bin i with respect to the jth ξ parameter.

We can now put everything together. First, we have the initial FI about the λ parameter, which
we can write in terms of si and ri

gλ =


1/s1r1 0 · · · 0

0 1/s2r2 · · · 0
...

...
. . .

...
0 0 · · · 1/sNrN


Equation 2 can be re-written in matrix form in terms of a diagonal matrix, S, and the Jacobian
matrix, J, for the N modelled reflectivity points, with respect to the M parameters, ξ.

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sN



J =


∂r1
∂ξ1

∂r1
∂ξ2

· · · ∂r1
∂ξM

∂r2
∂ξ1

∂r2
∂ξ2

· · · ∂r2
∂ξM

...
...

. . .
...

∂rN
∂ξ1

∂rN
∂ξ2

· · · ∂rN
∂ξM


The tensor transformation of gλ in this notation is then

gξ = (SJ)Tgλ(SJ) = JTSgλSJ

(M ×M) = (M ×N)(N ×N)(N ×N)(N ×N)(N ×M)

and the matrix SgλS is a composition of diagonal matrices, and is equal to
s1/r1 0 · · · 0

0 s2/r2 · · · 0
...

...
. . .

...
0 0 · · · sN/rN



1.1.5 Summary

In summary, the FI about ξ is given by

gξ = JTMJ

where, J is the Jacobian of the reflectances, ri, with respect to the parameters, ξ. M is a diagonal
matrix with entries (s0/r0, s1/r1 . . . sN/rN ) and si is the incident neutron flux, which depends on
the experimental condition k and the time spent measuring it, τk

si(τ) =
∑
k

τkµik
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1.2 Confidence Ellipses

To calculate confidence intervals in the general case, we can find the set of parameters that differ
from the estimate by a certain number of standard deviations. To do this, we need to know the
length of a vector in parameter space in terms of the number of standard deviations. This is what
the FI does (technically, it gives a linear approximation to the informational distance between
distributions, but they are related). So, if we want to find a vector with a given length, k, we solve

k2 = ∆ξTg∆ξ

It so happens that k in the above equation can be interpreted as “number of standard deviations”,
so a 2σ error bar will have k = 2. In practice, it is useful to fix a direction, and calculate the
magnitude of the vector needed to reach the threshold. I.e. let ∆ξ = ε∆̂ξ where ĥat denotes a
unit vector. Consider the 1-D case; k2 = ε2g, g is analogous to the inverse variance, so we have
k2 = ε2/σ2. Therefore, if we want to know where ε = 2σ, we would have k2 = (2σ)2/σ2 and thus,
k = 2.

In 2-D, the unit vectors can be written as (sinϑ, cosϑ). We can graphically solve the following

k2 = ε2
([

sinϑ, cosϑ
]
gξ
[

sinϑ
cosϑ

])
︸ ︷︷ ︸

scalar

for ε over a sample of angles, θ, in [0, 2π] by plotting the points (ε(θ) sin θ, ε(θ) cos θ). The result
is a confidence ellipse of size k between two chosen parameters. If |ξ| > 2, then for two chosen
parameters, ξi and ξj , the above equation becomes

k2 = ε2

([
sinϑ, cosϑ

] [gξi,i gξi,j
gξj,i gξj,j

] [
sinϑ
cosϑ

])

1.3 Point Estimates vs Posterior Distributions

An estimator, usually written with a ĥat, is a function of sampled data that provides an estimate
of a parameter. In frequentist statistics, one is concerned with the probability distributions of
estimators, not of the parameters themselves (as would be the case in Bayesian statistics). The
distribution of estimators often has a variance. When it does, and when it is unbiased, i.e.

E[ξ̂] = ξ

then it is related to the FI by the Cramér-Rao bound:

var ξ̂ <
1

N
(gξ)−1

1.4 Time Dependence

If there is a single measurement condition, we have si = µiτ . Then, we see that τ is a factor of all
the si’s and so of the matrix M and thus of gξ. We can therefore write gξ = τ f ξ. The size of an
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“error bar”, ε, for a single parameter, ξ, at a threshold, k, in a direction, ∆̂ξ, is given by

k2 = (ε∆̂ξ)gξ(ε∆̂ξ)

And so,
k2 = (ε∆̂ξ)τ f ξ(ε∆̂ξ)

Hence ε ∝ 1/
√
τ .

1.5 Bilayer Model Parameterisation

For the measured DMPC sample, each experimental dataset was recorded with an instrument
resolution of 2%. The instrument backgrounds were 3.21 × 10−6, 2.80 × 10−6 and 2.06 × 10−6 re-
spectively. The SLDs of the Si substrate and following SiO2 layer were defined using known values

of 2.073× 10−6Å
−2

and 3.41× 10−6Å
−2

. From fitting in RasCAL, we obtained values of 14.7Å and
24.5% for the SiO2 layer’s thickness and hydration. For both the Si/SiO2 and SiO2/DMPC interfa-
cial roughnesses, we obtained 2.00Å; all other interfacial roughnesses shared a common parameter
that was fitted as 6.57Å.

We have assumed the molecular volumes of the headgroups and tailgroups are known and constant

at 320.9Å
3

and 783.3Å
3
, and that any changes in molecule surface area are inversely proportional

to the headgroup and tailgroup thicknesses. Therefore, we need only fit one parameter: the area
per molecule (APM) at the surface. From the APM we can calculate the tailgroups thickness using
the known volume.

Thickness =
Volume

APM
(3)

From fitting the APM parameter, we obtained a value of 49.9Å
2
. Also using the tailgroup volume,

the SLD of the tailgroups can be calculated using the known tailgroup scattering length (SL) of
−3.08× 10−4Å and equation

SLD(ρ) =
Σb

Volume
(4)

Both the headgroups and tailgroups contain water through defects across their surfaces but there is
also water bound to the hydrophilic headgroups. The model accounted for these differing hydration
types by varying two parameters: the total bilayer hydration and headgroup bound waters for which
we obtained values of 7.37% and 3.59. The headgroup water SLs in H2O and D2O were calculated as
the product of the bound waters parameter and the known SLs of −1.64× 10−5Å and 2.00× 10−4Å
for the H2O and D2O solutions. Further, the product of the bound waters parameter and the

known volume of water, 30.4Å
3
, yielded the headgroup water volume. The headgroup thickness

was calculated using the total headgroup volume (including bound water), APM parameter and
equation 3. To determine the headgroup SLs in H2O and D2O we took the sum of the known
headgroup SL of 6.41× 10−4Å and headgroup SL in H2O and D2O previously calculated. Finally,
using the headgroup SL in each contrast and the calculated headgroup volume, we calculated the
SLD of the headgroup in each solution using equation 4.

We reparamaterised the fitted model as a function of bulk water contrast SLD using the known SLD

of the DMPC headgroups of 1.98×10−6Å
−2

(if no hydrating water was present) and approximating
the headgroup hydration at 27%.
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