J. Appl. Cryst. (2021). 54, doi:10.1107/S1600576721003575 Supporting information

2 JOURNAL OF
= APPLIED
2 CRYSTALLOGRAPHY

Volume 54 (2021)

Supporting information for article:

Combined specular and off-specular reflectometry: elucidating the
complex structure of soft buried interfaces

Aljosa Hafner, Philipp Gutfreund, Boris P. Toperverg, Andrew O. F. Jones,
Johann P. de Silva, Andrew Wildes, Henry E. Fischer, Mark Geoghegan and
Michele Sferrazza



Supporting Information: Combined Off-specular and Specular reflectometry: Elucidating the complex structure of soft
buried interfaces
Aljosa Hafner*?, Philipp Gutfreund”, Boris P. Toperverg®*, Andrew O.F. Jones®, Johann P. de Silva®, Andrew Wildes“, Henry E.
Fischer”, Mark Geoghegan®, Michele Sferrazza®

“Institut Laue - Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, Cedex 9, France
b Université Libre de Bruxelles, Département de Physique, Boulevard du Triomphe, 1050 Brussels, Belgium
¢ Petershurg Nuclear Physics Institute, National Research Center ” Kurchatov Institute”, 188300 Gatchina, Russia
4 Department of Physics and Astronomry, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United
Kingdom

Decomposition of optical enhancements in OSS maps

A scope of features in Fig. 4 can be understood analysing dif-
ferent contributions stemming from the transverse form-factor
G1; inEq. 45. Indeed, substitution of Eq.(42) into Eq.(45) yields
the explicit equation,

Gy = |y +FRPIRP + |7 + 74|
+ WG+ AR/ AR RFY S
in which Gj is represented as a sum of three terms of dif-
ferent symmetry. These terms are plotted in a subset of three
maps in Fig. S1.The contribution of the first term into the sum
reaches maximum values along the lines ps; = 2mn/d; — p; ¢
seen in Fig. S1 as a periodic sequence of ripples at integer n >
pid1/(27). Intensities of ripples are almost constant along each
of their crests, while decreasing with the order » at p; > p.y, or
P = pei- Their line shape becomes distorted approaching posi-
tions of critical p; & p, OF pr & pe, while intensities sharply
decrease at p; < p.o, OF pf < p.o. In contrast, the second term
in Eq.(S 1) reveals periodicity in the orthogonal direction, i.e.
along the lines [ps — p;| = 2mn/d; manifested in Fig. S1 by a
set of ridges running at integer » parallel to the main diagonal at
n = 0. The latter traces the SR ridge (not included). Intensities
along ridges reach maximum values when intersecting the verti-
cal lines p; =2 p.o, or horizontal lines, ps ~ po, while decaying
along ridges with the increasing sum (ps + p;) if p; > p and
Pf = pc2- Below the critical edges p for h-PMMA the inten-
sities of ridges abruptly drop to zero and steadily decrease with
increasing of orders n.
Fig. S1 illustrates the contribution of the third term in Eq.(S 1).
As this pattern originates from the cross-term of the scattering
functions it may become negative and is therefore plotted in lin-
ear scale. Such easy interpretation of various features in Fig.3
is possible when data are collected as a function of angles of
incidence, cv;, and scattering, ¢, at fixed wavelength A which
just plays a role of a scaling parameter unique for both axes p;
and py.
In contrast, the visual inspection and interpretation of data col-
lected in ToF mode as a function of A and e at fixed ay,
although containing about the same information as the 2D map
above, requires some efforts. An example of the 2D map calcu-
lated for exactly the same model, but presented in the coordi-
nates cry and A at a fixed value of ¢ is depicted in Fig. S2 for
the same sum of partial transverse form-factors plotted in Fig.4.
Next, three maps in Fig. 83 illustrate different ingredients com-
posing the map in Fig. S2 in the same way as maps in Fig. S1

compose the map in Fig. 4. Comparing Figs. S1 and S3 one can
see that, only the middle and bottom panels contain an intensity
line located on the SR ridge, which is now running vertically at
ary = . Other OSS features cannot be explained without com-
prehensive analysis. Among those features one may, however,
recognize the ranges of total reflection of incident, or/and scat-
tered neutron waves introducing critical wavelengths )\is(ag) =
Agg siney; and )\f;;(af) = Ay sinay, where \; = 2n/p is the
wavelength of total reflection at normal incidence onto the I®
layer. For a silicon substrate Ags ~ 1200 A, and for o; = 1°
the critical wavelength is A, = 21 A. Hence, if A exceeds this
value, but is still below the critical wavevector for h-PMMA,
the neutron wave is totally reflected from the Si substrate, and
interferes with the incident wave in the thick h-PMMA layer
and thus scattering in OSS directions.

Hence, the set of maps in Fig. 83 is, qualitatively, not so useful
as that in Fig.S3, due to the fact that in the A vs. oy repre-
sentation the symmetry of Fig.S1 intimately related with the
reciprocity principle is lost. Indeed, Eq.(45) and hence its com-
ponents in Eq.(S 1) are explicitly invariant with respect to inter-
change between p; and p;, but this does not necessarily mean
they obey the reciprocity principle. The latter requires invari-
ance with respect to the interchange between ¢ and «; at each
fixed value of A, if scattering is elastic.
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Different contrsibutions composing the map in Fig.4. The maps correspond to
the three terms in Eq. 45: a} First term, b} second term and ¢} third term.
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Figure S3
The same data asin Fig. 81, but plotted as a function of the angle of scattering
oy and the wavelength A.

Concentration fluctuations in binary compounds

Let us consider a simplest, but relevant to our experimental
situation, case when one of the layers of the multilayer stack
contains some amount A of inclusions which SLD g differs
from the surrounding matrix SLD . Let us also suppose that
inclusions are of a shape of right cylinders with their axes nor-
mal to the interfaces and heights determined by the layer thick-
ness d; < R, where R! refers to in-plane dimensions of cylin-
ders numerated over the layer I plane by the superscript i. The
base area sl' of cylinders is restricted by the closed contour line
Rl (w;) depending on the polar angle w of the 2D radius vector
(r” ”) where the vector r” determines the cylinder position.

Inside the contour, i.e. at |r|| - r”| < Ri, the SLD is equal to

g = pf, while p; = p¥ elsewhere over the layer 1. Note, that
if inclusion’s material is immiscible with that of the polymer
matrix then the cylinder’s base has preferably circular shape
with radius R} independent of w;.

For such system the in-plane SLD distribation p(r|| ), follow-
ing to Ref.(Krivoglaz, 1969), is described by the sum:

plry) = (0" = p° Zfz P =)+ 67,

S2)

where the in-plane shape function 7/ (r), —rTl) = 1,if|r —rf|| <
Rj and Fi(r —r}) = 0 otherwise.

Eq.(S 2) can be readily averaged over the layer plane provid-
ing the following expression for the mean value of SLD:

() = cilpt — o7) + o1, (S3)
where cl = SA/SOSS is the concentration of inclusions, and
St=3 M g { is the total base area of all cylinders illuminated
by the beam

Taking into account Eq.(S 2) and Eq.(S 3) the lateral factor
for the layer / in Eq.(41) can be rewritten as:

(ot — ot Z{e GFg) - F0)}.  (S4)

Api( qll

Here the cylinder form-factor 7/ (g)) is the 2D Fourier trans-
form,

Filg)) = /d"||e_iq"r"}'f("||), (85)
of the lateral shape function of the cylinder, while F{(0) = s! is
its base area such that the sum over all 7 is equal to the total area
S? = C[Soss.

It is important to remind that, due to the last term in Eq.(S 4)
the scattering amplitude in Eq.(40) is nonzero only if g, # 0.

That is why the pair correlator Glll(q”) in Eq.(46) obviously

turns into zero at q = 0 and does not contribute to the SR.
If, alternatively, ¢, # 0 then from Eq.(S 4) it follows that,

—ig () -

|PA Pz| ZFz q”

ij=1

Gli(q)) = J(—q))e ")y, (S6)




Angular brackets in this equation denote two types of in-plane
averaging: the first ranning over different shapes and sizes of
cylinders, and the second one running over distances a; = |rT| -

r|j|| between their positions. Assuming that ¢; < R; these two
types averaging are often accomplished independently. Then the
correlator is conveniently represented as a sum of two terms,

Gli(a)) = Gi(q)) + Git™(q)),

where the first term contains only diagonal elements with j =1
and therefore survives for totally random distribution of inclu-
sion positions, while the second one takes into account correla-
tions between these positions.

Hence the first term,

G2 (qy) = Milpt — pPPe(1 — e){IF g ),

is expressed via the auto-correlator (|F} (q”)|2> and determined
by the mean value of inclusion dimensions 7. If this value is
small then the corresponding diffuse scattering spreads into a
relatively large solid angle and may be seen in OSS as a flat
background modulated by the optical effect. However it may be
well detectable via GISANS.

The second term takes into account interference between the
scattering from different inclusions and can be written as fol-

lows:
Gt (q)) = Ml — o PR (g)))Pelqy)

87

(S8)

(S9)

All fitting parameters for SR and OSS

via the positions correlator,

LS a0 -r))
5(q”) = JTQ Z<e ey,
i#]

(S 10)

In many cases the latter can be approximated by the Lorentzian
squared (in case of exponential decay in 3D), or a simple
Lorentzian with the correlation length §;, as above in Eq.(50)
and done in this experimental work.

Typical AFM micrograph for advanced stage of dewetting of
the Case 1 sample

Figure S4
AFM topography of the final state of the DW4 bilayer sample.

Instability of the top layer, Sample DW4 (Case A) All fitting parameters for SR and OSS for the Case A sample.

Table S1
Fitted structural parameters for sample DW4 as a function of annealing time. The errors are from the fit. Parameters diyer, Ginter a0 oyper together form an artificial
layer at the interface, thus extending the interface into the top h-PMMA layer. In the late stages of annealing, the parameters &, and &3 are both describing a gradual
contrast between the top h-PMMA and bottom d-PS layer. The respective fits are shown in figure 8.

fann da.ps dinger dhpvma On-PMM A Pa-ps Linter Tinter & & & Ch
fmin]  [A] 4] [A [0 A% [0 A% o A% JA]  lum]  |wm] |um]  |%)
0 155(1) 0 1700(3) 0.91(2) 6.43(3) - L.8(2)

10 154(1) 0 1680(3) 1.01(2) 6.11(1) - - 1.9(3) - -
15 151(1) 10(3)  1646(3) L11(2) 6.28(3) . 40(2) 12(2) 2.3(5)  02(5) 6.0(5)
20 149(1) 18(1)  1643(4) 1.10(2) 6.1(1) 3.7(3) 35(1) 5(1) 1.8(7) 04(4) 7.0(5)
25 151(51)  11(4)  1646(4) 1.16(2) 6.05(3) 4.6(4) 35(2)  12.0(5)  24(5) 0.2(5) 11(1)
30 153(14) 7(2) 1629(2) 1.06(2) 6.09(2) 4.2(2) 50(2) 18(1) L5(3) 04(5) 9(1)
40 155(19) 3(2) 1632(2) 1.06(2) 6.1(1) 3.1(2) 58(2) 19(1) 0.6(5) 0.6(5) 11(1)

Case B All fitting parameters for SR and OSS for the Case B sample.

Table S2
Fitted structural parameters for sample PMMA3500 as a function of annealing time. opgpym 4 8 the Gaussian roughness between the d-PS and h-PMMA layers.
fann dyps Ay prama PnPMMa £a-ps OPSIPMMA  CPMMakir  SPMMA &ps EPMM 4zir
foin]  [A] (4] [10 64 %] [10 ¢4 7 (4] (4] lum] | pm) | pm)
0 107(1) 3627(9) 1.02(7) 5.57(14) 7.7(2) 115(4) 7.0(2) 1.6(1) 7.0(3)
5 103(1)  3520(9) 0.99(9) 5.74(17) 25.1(3) 113(4)  7.2(2)  Loe(5)  8.3(1)
10 117(1)  3430(10) 1.0(1) 5.22(17) 30.3(3) 116(4)  14.02) 095(5)  9.0(4)
15 133(1)  3460(9) 1.0(1) 4.75(18) 35.8(5) 112(4)  15.5(2) 0.75(5)  9.6(5)

Case C All fitting parameters for SR and OSS for the Case C sample.




Table S3
Fitted structural parameters for sample PMMA Bl as a function of annealing time. opspyma is the Gaussian roughness between the d-PS and h-PMMA layers.

fann daps dhprvma On-PMM A Pa-ps OpsPMMea  OPMMadsir  SPSIPMMA
fmia]  [A] [4] [10 64 % [10 ¢4 7 [A] [A] lum]

0 114(1)  29%4(5)  1.00(9) 6.05(15) 6.8(1) 78(2) 3.1(4)
5 111(1)  2852(4)  0.99(9) 6.17(18)  23.6(2) 73(2) 2.1(4)
10 111(1)  2849(5) 1.0(1) 6.17(20)  24.1(3) 77(2) 2.1(4)




