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1. Line profile parameters 

 

The X-ray diffraction measurements usually provide the I(2) intensity profiles of the different 

reflections. In order to compare this with theory, it is practical to convert the variable 2 to g, the 

variable of the reciprocal space, where g=2sin/ is the absolute value of the diffraction vector. 

The value of g at 2B, the exact Bragg position, is denoted by gB and it is expressed as: 

gB=2sinB/. In the following often g (a general position in reciprocal space) will be denoted by 

K. The variable of the intensity profiles can be expressed as: 

 

s = g−gB ≈ (2cosB/) .        (1) 

 

The most important characteristic parameters of an I(s) intensity function corresponding to the 

Bragg peak at 2B are: 

(1) the maximum intensity:  

 

I0 = max{I(s) |s ∈ ℝ},         (2) 

 

(2) the Full Width at Half Maximum (FWHM): 

 

FWHM{I(s)} = s2−s1, where s1 < s2 and I(s1) = I(s2) = I0/2 ,    (3) 

 

(3) the integral breadth (equivalent to the area of the normalized intensity curve): 
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1
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∫ 𝐼(𝑠)𝑑𝑠

∞

−∞
 .         (4) 

 

In X-ray or neutron diffraction usually FWHM < . 

 

2. Size broadening of diffraction profiles 

 

With decreasing scattering volume the diffraction profiles broaden. This is called size 

broadening. X-ray or neutron diffraction profiles provide the coherently scattering domain size 

or crystallite size (Bertaut, 1950). This is often smaller than the grain size obtained by 

transmission electron microscopy (TEM). In Ungár et al. (S2005) it was shown that 

the coherently scattering domain size given by X-ray or neutron line profile analysis provides the 

subgrain or dislocation cell size bounded by small angle grain boundaries or dipolar walls. In the 

present section the effect of the coherently scattering domain size on the diffraction profiles is 

discussed. 



 

2.1 Size parameters 

 

The definition of the commonly used different size parameters, given in eqs. (12), (13) and (16) 

below, is presented through a simple case study (Warren, 1969). Let’s assume an infinite 

crystallite plane with the thickness of N atoms. According to the theory of kinematical X-ray 

scattering, the line profile of this special crystallite is: 

 

I(s) ∼ 
𝑠𝑖𝑛2(N𝑥)

𝑠𝑖𝑛2(𝑥)
 ,         (5) 

 

where x = Ga, G = g+g, g is the diffraction vector, g is a small vector, and a is the unit cell 

vector chosen to be perpendicular to the plane of the crystallite. The function sin2(Nx)/sin2(x) 

describes the shape and position of the peaks in this special case. This function is plotted for 

different values of N in Fig. 1. It has a maximum value at positions: x = n, n∈ℤ. This condition 

 

 
 

Fig. 1. The function sin2(Nx)/sin2(x) plotted close to its first maximum for different values of N. 

As N tends to infinity, the curve becomes a delta function. 

 

is equivalent to the Laue equations. The maximum value of this function is lim
𝑥→0

 
𝑠𝑖𝑛2𝑁𝑥

𝑠𝑖𝑛2𝑥
=N2. 

For large values of N this profile function can be approximated by the following simple function: 

 
𝑠𝑖𝑛2𝑁𝑥

𝑠𝑖𝑛2𝑥
 = N2(

𝑠𝑖𝑛𝑁𝑥

𝑁𝑥
)

2

 .         (6) 

 

The FWHM value of this function is given by: 

 
𝑠𝑖𝑛𝑁𝑥

𝑁𝑥
 = 

1

√2
 .          (7) 

 



This transcendent equation can be numerically solved for Nx: the solution is Nx = 1.39. 

Consequently, the FWHM, i.e. 2x, is reciprocally proportional to the number of lattice points 

perpendicular to the diffracting plane: 

 

FWHM = 2.78
1

𝑁
 .         (8) 

 

This means that the profile function becomes narrower as the crystallite becomes thicker. The 

integral breadth of this curve is: 
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 .        (9) 

 

A conventional  - 2 diffractometer measures the intensity parallel to the direction of the g 

diffraction vector as a function of s = |g|. The FWHM and integral breadth values of the I(s) 

intensity function as a function of s can be expressed as: 

 

,      (10) 

 

 ,       (11) 

 

 

where LG,a = Nacos((G,a)∡) is the projection of the crystallite width in the direction of the 

diffraction vector. This means that by measuring the widths of the peak profiles, only the 

crystallite size parallel to the diffraction vector can be determined. For the reflection h00, LG,a is 

equal to the thickness of the crystal, i.e. either to 0.9/FWHM or to 1/, respectively. The 

following two size parameters can be defined generally for an arbitrary I(s) intensity profile: 

 

D = 
0.9

FWHM
 ,          (12) 

 

or 

 

d = 
1


 .           (13) 

 

Eq. (12) is the Scherrer (S1918) equation. The more rigorous theoretical description is done by 

the Fourier transform of the intensity profile Warren (1959): 

 

        (14) 

 



Fig. 2 shows this function. 

 

 
 

Figure 2: The Fourier transform of the sin2(Nx)/x2 function. For an infinite-plane crystallite of the 

thickness of N atoms the Fourier transform of the I(s) size function is:  

 

      (15) 

 

Eq. (15) shows that that LG,a can be determined from the initial slope of the Fourier transform. 

The size parameter L0 is generally defined for an arbitrary I(s) intensity profile as the initial slope 

of the AS(L) Fourier transform (Warren, 1959): 

 

.         (16) 

 

The definition of L0 is illustrated in Fig. 6 below for the case of spherical crystallites with 

lognormal size distribution. The different size parameters usually satisfy the following relation 

(Langford & Wilson, S1978): D ≥ d ≥ L0. For spherical crystallites d and L0 are proportional to 

the volume- and area-weighted average crystallite sizes, respectively (Langford & Wilson, 

S1978): 

 

 ,        (17) 

 

 .        (18) 

2.2. Size distribution functions 

 

In the previous section the size broadening of a single crystallite has been discussed. A 

polycrystalline or fine powder sample consists of many crystallites with different sizes where the 

size distribution function has to be implemented. By selecting the proper size distribution and 

assuming a realistic crystallite shape, the size broadened profile can be calculated on a 



theoretical basis. Several distribution functions can be used to describe the size distribution of 

crystallites (Langford et al., S2000; Scardi & Leoni, S2002). Among these, one of the most 

flexible one is the lognormal size distribution (Aitchison & Brown, S1957). The validity of this 

function was confirmed by several observations and successful applications (Valiev et al., 

S1994; Terwilliger & Chiang, S1995; Krill & Birringer, S1998, Ungár et al., S1999; Langford et 

al., S2000). The Gamma distribution (Arley & Buch, S1950) is also suitable to describe the 

experimental size distributions. York (S1999) proposed another distribution. These distributions 

are discussed below. 

 

(i) The lognormal distribution. According to TEM observations (Aitchison & Brown, S1957) this 

is the most commonly used size distribution of particle size in a fine powder. It can be shown 

that a milling procedure leads to a lognormal size distribution (Hinds, S1982). Therefore, the 

lognormal distribution is widely used in microstructural investigations. It is obtained by 

substituting the variable of a normal distribution with its logarithm. When one applies the 

lognormal distribution to describe the size distribution of crystallites, this means that the 

logarithm of the crystallite size follows a normal distribution. The density function of the 

lognormal size distribution has the following form: 

 

 .        (19) 

 

where m and  are the parameters of the distribution, logm is the median and  the variance 

of the normal distribution. The parameters m and  are called “median” and “variance” of the 

lognormal size distribution. In the CMWP procedures (Ribárik et al. S2001; Ribárik et al. S2004; 

Ungár et al. S2001) b=logm and c=√2 are the parameters used for the optimization procedure. 

 

(ii) The Gamma distribution. The Gamma distribution (Arley & Buch, S1950) is also flexible 

and can be used for describing crystallite size distributions. Its density function has the form: 

 

 ,       (20) 

 

where a and b are the parameters of the distribution and (x) is the Gamma function. 

 

(iii) York’s distribution. The York distribution (York, S1999) was obtained by assuming a 

normal growth phenomena. The density function of the York distribution has a form similar to 

the Gamma distribution: 

 

,        (21) 

 

where a and b are the parameters of the distribution and (x) is the Gamma function.  

 



We note that Leoni & Scardi (S2004) proposed a bar-diagram for the size distribution density 

function and each individual column height of this diagram is fitted independently in their 

pattern-refining procedure. Since this is an ad-hoc, experimental distribution its discussion is 

beyond the scope of this theoretical section. Langford et al. (S2000) have shown that the above 

discussed size distribution functions correlate well with experimental X-ray diffraction profiles 

and, that it is difficult, if not impossible, to distinguish between size distribution functions on an 

experimental basis. 

 

2.3. Determination of the size profile (Ribárik et al. S2001; Ribárik et al. S2004; Ungár et al. 

S2001) 

 

Assuming a particular crystallite shape and crystallite size distribution, one can determine the 

theoretical size profile. Bertaut (S1949) and Guinier (S1963) have shown, that the size profile of 

a powder specimen consisting of crystallites with arbitrary size and shape can be determined as 

follows: 

 

(a) the crystallites should be divided into columns parallel to the diffraction vector g, 

(b) the “size profile” is obtained as the volume-weighted sum of the intensity profiles 

normalized by their integral intensities corresponding to each column. The size profile of a 

column with area Ai and height Mi, normalized by its integral intensity: 

 

.           (22) 

 

By summing up the contributions from all columns of all crystallites using the volume of the 

column as weight, the intensity distribution becomes: 

 

 .       (23) 

 

Introducing g(M)dM as the sum of the volumes of the columns with height between M and 

M+dM of all crystallites: 

 

 .        (24) 

 

Using this quantity, the intensity distribution can be written as: 

 

,        (25) 

 



Eq. (25) shows that the size profile can be obtained by determining g(M)dM, which depends on 

the crystallite shape and the size distribution of the crystallites. Now we calculate the size profile 

according to the lognormal size distribution for (i) spherical and (ii) ellipsoidal crystallite shapes  

(Ribárik et al. S2001; Ungár et al. S2001). Latter is a simple and general description of 

deviations from spherical shape. It also accounts for anisotropic size broadening as a function of 

hkl. For a particular crystallite shape g(M)dM is determined first for one crystallite. The 

calculation is based on the geometrical properties of the crystallite shape. The size profile is 

obtained by summing up for all crystallites using the crystallite size distribution function. In the 

case of spherical crystallites and lognormal size distribution, g(M)dM is obtained as: 

 

 ,         (26) 

 

where we used the notations of Fig. 3. 

 

 
Figure 3. Determination of g(M)dM in the case of a spherical crystallite with radius x. The goal 

is to calculate the volume of the part of the sphere with column length between M and M+dM. 

This part of the sphere is approximated by an annulus based prism and it is expressed with M, x 

and y, where y is the radius of the annulus. For one crystallite g(M)dM is equal to the volume of 

the part of the sphere with column length between M and M+dM: 

 

g(M)dM ≈ −2pydyM.          (27) 

 

Differentiating eq. (26) we obtain: 2ydy =−MdM/2. Therefore for one crystallite: 

 

g(M)dM ∼ M2 dM.          (28) 

 

Since f (x)dx is proportional to the number of the crystallites with diameter between x and x+dx 

and all the crystallites with diameter x ≥ M contain the column length M: 

 

.        (29) 

 

Using the distribution density function in eq. (19), this integral can be expressed as: 



 

,        (30) 

 

where erfc is the complementary error function: 

 

 .         (31) 

 

For all crystallites in the specimen g(M)dM can be written as: 

 

 .      (32) 

 

Using eq. (25) the size profile is obtained (Ribárik et al., S2001): 

 

 .       (33) 

 

This size profile-function is plotted for different values of m and  in Figs. 4 and 5.  

 

The CMWP procedure is working in Fourier space (Ribárik et al. S2001; Ribárik et al. S2004). 

Now we determine the Fourier transform of the size profile. According to eq. (14), the Fourier 

transform of the sin2(Ms)/(s) function is: 

 

 .         (34) 

 

 



 
 

Figure 4: The size function for spherical crystallites with lognormal distribution with fixed value 

of  = 0.71, as a function of s. The value of m varies for the different curves. The value of m is 

indicated in the upper right corner of the figure. 

 

 
 

Figure 2.5: The size function for spherical crystallites with lognormal distribution with fixed 

value of m = 2.72 nm, as a function of . The value of  varies for the different curves. The 

value of  is indicated in the upper right corner of the figure. 

 

Using eq. (34) the Fourier transform of the size profile-function in eq. (33) can be given as: 

 

 .    (35) 

 



 

Using substitutions and partial integration the above integral can be simplified: 

 

AS(L) =  

  .  (36) 

 

Dividing AS(L) by its maximum value, the normalized size Fourier transform is obtained. The 

maximum value of AS(L) is: 

 

 .        (37) 

 

An example for the plot of the size Fourier transform is shown in Fig. 2.6.  

 

 
 

Figure 6. The theoretical Fourier transform of a size profile for spherical crystallites with 

lognormal size distribution. The initial slope defining L0 is also indicated in the figure. 

 

We note that the Fourier transform of the size profile can also be obtained from the Patterson 

function of the scattering object (Guinier, S1963; Zilahi et al., S2016): 

 

 ,        (38) 

 

where (r)=1 if r ∈“scattering object” otherwise (r)=0. The two different calculations provide 
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exactly the same result for AS(L) (Ribárik et al., S2001). The different size parameters can be 

obtained as functions of m and  using the explicit forms of IS(s) and AS(L). The derivation of 

AS(L) gives the L0 size parameter: 

 

 .      (39) 

 

The maximum value of the size profile is: 

 

 .       (40) 

 

The integral of the normalized size profile gives the size parameter d: 

 

 .    (41) 

 

The arithmetic-, area- and volume-weighted mean crystallite size values are: 

 

xj =m exp(k2),         (42) 

 

2.4. Anisotropic size broadening (Ribárik et al. S2001; Ribárik et al. S2004; Ungár et al. S2001) 

 

If the crystallite shape is spherical, the size function is isotropic and thus independent of the hkl 

indices. However, in the case of anisotropic crystallite shape the size function becomes 

anisotropic and hkl dependent, cf. (Langford et al., S1993). Now we calculate the size profile-

function for spherically ellipsoidal shape and lognormal size distribution (Ribárik et al., S2001; 

Ribárik et al., S2004). The determination of the g(M)dM  expression is done in the following 

steps taking into account the notations shown in Fig. 7. 

 

1. Construction of the equation of the ellipsoid with ellipticity =c/a in the eigensystem denoted 

 by x′ , y′, z′. 

2. Transformation by rotation of the angle  around the axis x into the system x, y, z, where  is 

 the angle between the diffraction vector and the revolution axis of the ellipsoid and z is 

 parallel to g. 

3. Expressing the column length M as M(x, y)=z2(x, y)−z1(x, y), where z1 and z2 are determined by 

 the equation of the ellipsoid. 

4. Determination of the area, T(M), of the curved plane given by the equation M(x, y)=M.  

5. For one crystallite the following is obtained: 

 



 g(M)dM = M[T(M)−T(M+dM)] = 


2
h(,)M2dM ,     (43) 

 

 where h(,) is given by the equation of M(x, y). We note that in the case of a sphere: 

 h(1,)=1. 

6. Calculation of the maximum column length Mmax: 

 

 .       (44) 

 

7. Summing up for all crystallites with the column length M and using the lognormal size 

distribution density function f (x): 

 

 .      (45) 

 

The size profile-function obtained in this way is identical to the one corresponding to spherical 

crystallites with the only difference that the m parameter becomes hkl-dependent: 

 

 ,        (46) 

 

where mA is the now the m parameter of the size distribution. If the relative orientation between 

the unit cell vectors and the axis of revolution of the ellipsoid are known, coshkl can be 

expressed with the hkl indices. For cubic crystals, if the axis of revolution is parallel to the unit 

cell vector a: 

 

.         (47) 

 

For hexagonal crystals, if the axis of revolution is parallel to the unit cell vector c: 

 

 .       (48) 



 

 
 

Figure 7. Notations used in the determination of the ellipsoidal size profile-function. The radii of 

the spherical ellipsoid are: a and c. There are two coordinate systems: x, y, z and x′, y′, z′, where 

latter is the eigensystem. The two coordinate systems are rotated by an angle of  around the x 

axis. The diffraction vector g is also indicated. The goal is to determine g(M)dM based on the 

geometrical properties of the part of the ellipsoid with column length between M and M+dM 

parallel to g. 

 

We note that Scardi & Leoni (S2002) calculated the hkl dependent size broadening for different 

polyhedra, which is another possibility to introduce size anisotropy. 

 

3. Strain broadening 

 

In a real crystal, due to the lattice defects, the atoms are displaced relative to their ideal position. 

For this reason the reciprocal space may also be distorted and the condition of diffraction is 

satisfied not only in the ideal positions of the reciprocal lattice points, but in a finite volume in 

their proximity. This effect is called strain broadening. Warren (1959) gave the Fourier transform 

of the X-ray line profile if size and strain effects are present simultaneously: 

 

A(L) = AS(L)AD(L) ,          (49) 

 

where the strain Fourier coefficients can be expressed in the following form: 

 

𝐴ℎ𝑘𝑙
𝐷 (L)  exp[- 22g2L2𝑔,𝐿

2 ] ,        (50) 

where g is the absolute value of the diffraction vector, 𝑔,𝐿
2  is the mean square strain (mss) 

depending on the displacement of the atoms relative to their ideal position and the brackets 

indicate spatial averaging. According to the continuum theory of elasticity, the longitudinal strain 

parallel to the direction of the g diffraction vector is defined as (Wilkens, 1970): 

 



,       (51) 

 

where u is the displacement field and L is the distance of the lattice points r+
𝐿

2

𝐠

|𝐠|
 and r-

𝐿

2

𝐠

|𝐠|
. With 

this the mss is obtained as: 

 

 .        (52) 

 

For discrete atoms, the strain, g,L is defined as: 

 

,         (53) 

 

where j and j′ are the indices of the atoms in the direction of g, n = j − j′, L = nl0 and l0 is the 

distance between two atoms in the g direction (Warren, 1959). The mss is obtained as the square 

of the strain averaged over all atomic pairs with the distance of nl0: 

 

 .         (54) 

 

Several authors worked on the determination of the mean square strain, including Warren (1959), 

Krivoglaz & Ryaboshapka (1963) and Wilkens (1970). Warren (1959) assumed either random 

atomic displacements and/or stacking faults. Krivoglaz (1969) and Wilkens (1970) assumed 

dislocations as the main source of strain broadening. Krivoglaz & Ryaboshapka (1963) assumed 

a totally random distribution of dislocations in the entire crystal and obtained the following 

expression for small L values: 

 

,         (55) 

 

where D is the crystal size,  is the dislocation density, C is the contrast factor of dislocations 

(see more details below) and b is the Burgers vector of dislocations. The problem with this 

formula is that (i) it diverges as D tends to infinity and (ii) using this strain function, the strain 

Fourier transform does not decay as L tends to infinity. For small L values, however, this 

logarithmic expression enables to estimate the dislocation density (Ribárik, 2008). The 

logarithmic behavior of the mss for small L values was derived by a rather exact method by 

Groma (1998, 2003), where it was shown that this is a general property of any dislocation 

configuration.  

 



3.1. The Krivoglaz–Wilkens model of strain broadening caused by dislocations 

 

There is a close correlation between strain broadening and the elastic stored energy of 

dislocations (Wilkens, S1969; Kocks & Scattergood, S1969; Groma, 1998). Based on that, 

Wilkens realized that the logarithmic singularity in eq. (55) is similar to the logarithmic 

singularity in the elastic stored energy of dislocations (Nabarro, S1952). In the case of the elastic 

stored energy of dislocations the logarithmic singularity is renormalized by introducing the 

effective outer cut-off radius of dislocations, Re (Nabarro, S1952). The physical meaning of Re is 

that the dislocations strain fields are screened in a dislocation ensemble and therefore do not 

reach out to longer distances than Re from any arbitrary position within the ensemble. Wilkens 

improved the Krivoglaz model by replacing D by R𝑒
∗  in eq. (55). The restrictedly-random 

dislocation distribution was introduced, where the crystal is assumed to consist of separate 

regions with diameters of R𝑒
∗ . Each R𝑒

∗  diameter region consists of pairs of plus and minus 

straight parallel screw dislocations of the density  distributed randomly within these regions. 

There is no interaction between dislocations outside of these regions. Wilkens (1970)  

derived the mss in the entire L range: 

 

,         (56) 

 

where f is the strain function. In the following we call f the Wilkens function. It was developed 

numerically in the entire L range given in eqs. (A6-A8) in Appendix-A in Wilkens (1970): 

 

      (57) 

 

where f(
𝐿

𝑅𝑒
∗)=f(*) and =

1

2
exp (−

1

4
)

𝐿

𝑅𝑒
∗ . The Wilkens function and its approximations for small 

and large values of L are plotted in Fig. 8. In the Wilkens function the same logarithmic term is 

present as in the Krivoglaz model, but it does not diverge with the crystallite size, since it 

depends on the correlation-length parameter, R𝑒
∗ , renormalizing the logarithmic singularity in eq. 

(55). Both the Krivoglaz and Wilkens models reveal a logarithmic singularity at small L values. 

This, however, has no significant effect on the shape of line profiles considerably because in the 

Fourier transform of the strain profiles, AD(L) the mss is multiplied by L2 compensating this 



singularity to a great extent: L2logL→0, if L→0. We note that in most practical cases instead of 

R𝑒
∗  the effective outer cut-off radius Re=R𝑒

∗ exp(2) is used. The reason for this is that in the paper 

of Wilkens (1970) R𝑒
∗  was used for easing calculus-technical processes. However, the physical 

quantity related to true distances is Re (Ungár et al. 1984; Wilkens, 1988; Hecker et al., 1997).  

 

 

Inserting eq. (56) into (50) the Fourier–transform of the strain profile is obtained: 

 

 .      (58) 

 

 
 

Figure 8. The f*() Wilkens function (solid line) and the two approximations. The dash-line 

curve is the logarithmic part at small L values. In the figure it is approximates as: f1()=
7

4
-log2-

log(). The dotted-line curve is the hyperbolic part at large L values approximated as: 

f2()=
512

90
 
1


 . Using numerical simulations Kamminga and Delhez (S2000) showed that the strain 

profile calculated by the Wilkens-model is also valid for edge dislocations and curved 

dislocations.  

 

The actual value of R𝑒
∗  or Re depends on the actual value of the dislocation density, . In order to 

avoid this ambiguity Wilkens (1970) introduced the dimension free dislocation arrangement 

parameter: 

 

M* = R𝑒
∗ √ or M=Re√ .        (59) 

 

The value of M* or M is large when the dislocations are arranged uncorrelated randomly and the 

related strain fields are of long-range character. On the contrary, M* or M is small when opposite 

sign dislocations are in strong correlation close to each other and the related strain fields, due to 

screening, are of short range character. A schematic illustration is shown in in Fig. 9, where 12 

dislocations are randomly distributed in Fig. 9a and in strong dipole configuration in Fig. 9b. In 

the case of random distribution the strain fields reach out much further than the average 



dislocation distance, ddisloc, whereas in the case of strong dipole configuration the strain fields are 

strongly screened and Re becomes shorter than ddisloc. The M value is in direct correlation with 

the average dislocation distance: 

 

M = Re√ = 
𝑅𝑒

𝑑𝑑𝑖𝑠𝑙𝑜𝑐
 ,         (60) 

 

The random or the strong correlated dislocation arrangements can be called weak or strong 

dipole character. In the first case M is larger than unity, M≫1, whereas in the second case it is 

close to unity or even smaller: M1.  

 

 

  
(c) 

 

(d) 

 
 

Figure 9. A schematic interpretation of the dislocation dipole character parameter, M=Re. (a) 

Random dislocation distribution, where M1. (b) Dislocations arranged in strong dipole 

configuration where M1. (The same type of figures can be drawn with R𝑒
∗ .) (c) and (d) 

Schematic strain profiles corresponding to the dislocation arrangements in (a) and (b), 

respectively. In the case of (a) and (c) Re1/√ and M1, whereas in the case of (b) and (d) 

Re1/√ and M1. (The y scale of the profiles in (c) and (d) is logarithmic.) 

 

Due to the reciprocity of length scales in crystal and reciprocal space, when the strain fields are 

of long or short range character the tail regions of diffraction peaks decay faster or slower and 

the related M or M* parameters are large or small, respectively. Fig. 10 shows strain profiles for 

the same dislocation density, , but for different M* values.  

 

 



 
Figure 10. The shape of strain profiles for fixed  and variable M* values. Note that s is 

normalized by the FWHM values of the profiles. 

 

The Fourier transform of the strain profile given by the Wilkens model is real, therefore its 

inverse Fourier transform, which is the strain profile itself, is symmetrical. Strain profiles are, 

however, not necessarily symmetrical. For example in the case of tensile deformed Cu single 

crystals (Ungár et al., 1984; Mughrabi et al., 1986; Gaál, 1973, 1976, 1984; Jakobsen et al., 

2006; Jakobsen et al., 2007) or in tensile deformed lath martensitic steels (Ungár et al., 2017; 

Harjo et al, 2017; Ódor et al., 2020) strain profiles are characteristically asymmetric. By 

characteristically asymmetry we mean that the peak asymmetry is of the opposite sense in 

patterns measured on planes normal (axial-case) or parallel (side-case) to the tensile direction. 

Characteristic peak asymmetry was explained by the composite model of heterogeneous 

microstructures developed by Mughrabi et al. (1986) for dislocation cell structures. A more 

fundamental theoretical description was given by Groma (1998) taking into account dislocation-

dislocation correlation and the formation of polarized dislocation dipoles. 

 

3.2. Strain anisotropy: the concept of contrast factors 

 

Strain anisotropy means that the broadening of the profiles show an anisotropic behavior as a 

function of the hkl indices: the width of the profiles is not a monotonous function of the length of 

the diffraction vector or its square, see for example the Williamson-Hall type plot (Williamson & 

Hall, 1953) of ball milled WC (Gillies & Lewis, S1968) in Fig. 11 or plastically deformed 

copper in Fig. 12a. Dislocations are extremely anisotropic lattice defects giving contrast in a 

diffraction experiment only under specific diffraction conditions. In TEM the visibility criterion 

of dislocations is gb0. The schematic drawing in Fig. 11 shows the same dislocation in two 

different diffraction conditions. One, (a), where g and b are parallel and the curved reflecting 

lattice planes are expected to cause large strain broadening. The other, (b), where g and b are 

normal to each other and the non-affected straight reflecting planes leave diffraction peaks 

narrow.  

 

Line broadening can be visualized by the FWHM or the integral breadths,  (both in reciprocal 

space coordinates, K=d*=1/d) vs. K (Stokes & Wilson, 1944; Hall, 1949; Williamson & Hall, 

1953): 



FWHM=
0.9

𝐷
 + K ,  = 

1

𝐷
 + K ,       (61) 

 

where D and  are related to the crystallite size and the microstrain. Line broadening is assumed  

 

 
Figure 11. The squared integral breadth,  vs. the squared d* of WC X-ray diffraction patterns. 

WC was ball-milled to different periods of times up to 16 h (Gillies & Lewis, 1968). 

 

 

  
 

Figure 12. (a) The FWHM vs. K=d* of Cu X-ray diffraction patterns. The specimen was 

deformed by equal-channel-angular-pressing (ECAP). (b) The same FWHM values as in (a) vs. 

K√𝐶̅, where 𝐶̅ is the average contrast factor of Cu (Ungár & Borbély, 1996). 

 

to be caused by microstrain whose spatial average is zero. Line broadening does not change 

lattice spacings. Therefore it is more appropriate to use √〈𝑔,𝐿
2 〉 instead of  in eq. (14): 



 

FWHM=
0.9

𝐷
 + √〈𝑔,𝐿

2 〉K ,  = 
1

𝐷
 + √〈𝑔,𝐿

2 〉K .      (62) 

 

In a texture free polycrystalline sample, an ideal powder specimen or in a single crystal where all 

possible slip systems are equally populated the contrast factor has to be isotropic for a particular 

hkl reflection. This means that the individual contrast factors, C have to be averaged over all 

possible permutations of hkl (Ungár & Tichy, 1999).  

 

 
 

Figure 13. The two schematic drawings (a) and (b) show the same edge dislocation (symbolized 

by the reversed T) with the lattice plane traces around them. The green arrow lines indicate in 

and outgoing  radiation beams reflected on the blue highlighted planes. In (a) the reflecting 

planes are curved and gb0, thus strong strain broadening is occurring. In (b) the reflecting 

planes are unaffected  and gb=0, in this case no strain broadening is occurring (this is true only 

schematically).  

 

The longitudinal strain parallel to the diffraction vector g is [25]: 

 

 g = 



(gu)/g ,         (63) 

 

where u is the displacement field of dislocations and  is the direction parallel to g. On the right 

hand side of equation (56) the only hkl dependent term is C. Tus the hkl dependence of C can be 

obtained from the expression: 

 

C  <[



(gu)/g]2> = 

g g

g2

2








  ,      (64) 

 



where  =gradu  is the distortion tensor. The pointed brackets indicate averaging over the crystal 

volume. Relation (64) shows that Cg4 is a fourth order polynomial of the hkl indices: 

 

Cg4 = P4(hkl)          (65) 

 

The average values of the contrast factors, C , is obtained by averaging P4(hkl) over all possible 

permutations of the hkl indices of any particular reflection. This means that we have to find the 

invariants of P4 with the requirement that they satisfy the symmetry of the particular crystal 

structure. For cubic crystals the only fourth order invariant except the trivial g4 is: 

 

h2k2 + h2l2 + k2l2  .         (66) 

 

With this 

 

C  = 
P

g

4

4  = A + B 
( )

h k h l k l

h k l

2 2 2 2 2 2

2 2 2 2

+ +

+ +
 ,      (67) 

 

where A and B are constants. Using the notation: 

 

H2 = 
( )

h k h l k l

h k l

2 2 2 2 2 2

2 2 2 2

+ +

+ +
 ,        (68) 

 

the average contrast factors of dislocations for cubic crystals will be: 

 

C  = A + BH2  .         (69) 

 

The constants A and B depend on the elastic constants of the crystal and the type of dislocations, 

e. g. edge and/or screw character (Ungár et al., 1999; Borbély et al., 2003; Martinez-Garcia et al., 

2008). If B is not zero eq (69) can be given as: 

 

C =C h00(1-qH2) ,          (70) 

 

where 𝐶̅h00 is the average contrast factor of the h00 reflections and q is a constant depending on 

the elastic constants of the crystal and the dislocation type. The q parameter is shown in Fig. 14 

for edge and screw type dislocations in fcc and bcc crystals as a function of the elastic 

anisotropy, Ai, of crystal (Ungár et al., 1999). Note that for <h00> type Burger vectors B is zero, 

therefore in this case only eq. (69) is valid. In the case of a particular specimen at the 

corresponding Ai anisotropy parameter value (where Ai=2c44/(c11-c12) and c11, c12, and c44 are the 

elastic constants of the material) there is a window for the q parameter between the qedge and 

qscrew values belonging to edge or screw character dislocations. From the experimentally 

determined q parameter value the fraction of edge or screw character dislocations, fedge or fscrew, 

can be determined: 

 



fedge = 
𝑞−𝑓𝑒𝑑𝑔𝑒

𝑓𝑠𝑐𝑟𝑒𝑤−𝑓𝑒𝑑𝑔𝑒
 , fscrew = 

𝑓𝑠𝑐𝑟𝑒𝑤−𝑞

𝑓𝑠𝑐𝑟𝑒𝑤−𝑓𝑒𝑑𝑔𝑒
 .      (71)  

 

 

  
 

Figure 14. The q parameter vs. the elastic anisotropy Ai and the ratio of the elastic constants 

c12/c44: (a) in the case of fcc screw and edge dislocations, the latter when c12/c44=1; (b) in the case 

of bcc screw and edge dislocations, the latter when c12/c44=1. 

 

For hexagonal crystals the average contrast factors are (Ungár & Tichy, 1999; Dragomir & 

Ungár, 2002): 

 

𝐶 ̅ = 𝐶ℎ̅𝑘.0(1 + 𝑎1𝐻1
2 + 𝑎2𝐻2

2) ,        (72) 

 

where 

 

𝐻1
2 =

[ℎ2+𝑘2+(ℎ+𝑘)2]𝑙2

[ℎ2+𝑘2+(ℎ+𝑘)2+
3

2
(

𝑎

𝑐
)

2
𝑙2]

2  ,   𝐻1
2 =

𝑙4

[ℎ2+𝑘2+(ℎ+𝑘)2+
3

2
(

𝑎

𝑐
)

2
𝑙2]

2   

 

and a and c are the lattice constants of the hcp crystal.  

 

For orthorhombic crystals the average contrast factors will be (Ungár & Tichy, 1999; Ribárik, 

2008): 

 

𝐶 ̅ = 𝐶ℎ̅00(𝐻0
2 + 𝑎1𝐻1

2 + 𝑎2𝐻2
2 + 𝑎3𝐻3

2 + 𝑎4𝐻4
2 + 𝑎5𝐻5

2) ,    (73) 

 

where 

 

    (74) 

 



The constants Ch00 and Chk.0 are calculated on the basis of the crystallography of dislocations and 

from the elastic constants of the crystal (Ungár et al, 1999). The q, a1,a2, . . .  and a5 parameters 

are global for all reflections in a particular diffraction pattern. They are related to slip modes and 

edge or screw dislocation character. Borbély et al. (2003) developed a freely available numerical 

procedure, ABIZC, for the calculation of individual or average contrast factors taking into 

account the elastic constants of the material, the lattice parameters and the relative orientations of 

the l, b, n and g vectors. 

 

 

 

The CMWP procedure provides the weighted sum of squared residual (WSSR) and the 

goodness of fit (GoF) at the end of the fitting procedure listed in the *.sol file. 
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