
 

 

J. Appl. Cryst. (2021). 54,  doi:10.1107/S160057672100251X        Supporting information 

 
Volume 54 (2021) 

Supporting information for article: 

Quantifying the robustness of the neutron reflectometry technique 
for structural characterization of polymer brushes 

Isaac J. Gresham, Timothy J. Murdoch, Edwin C. Johnson, Hayden Robertson, 
Grant B. Webber, Erica J. Wanless, Stuart W. Prescott and Andrew R. J. Nelson 

 

 

 



Quantifying robustness of the neutron reflectometry
technique for structural characterization of polymer

brushes: Supporting information

Isaac J. Gresham1, Timothy J. Murdoch2,4, Edwin C. Johnson2, Hayden
Robertson2, Grant B. Webber2, Erica J. Wanless2, Stuart W. Prescott*1,

and Andrew R. J. Nelson3

1School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
2Priority Research Centre for Advanced Particle Processing and

Transport, University of Newcastle, Callaghan, Australia
3ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

4Current address: Department of Chemical and Biomolecular
Engineering, University of Pennsylvania, Philadelphia, Pennsylvania

19104, United States
*email: s.prescott@unsw.edu.au

1



Contents

1 Materials 3

2 Nested sampling 4
2.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Prior characterization 6
3.1 Determination of PNIPAM SLD . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Characterization of PNIPAM wafer . . . . . . . . . . . . . . . . . . . . . . 7

4 Model construction 11
4.1 FreeformVFP parameterization . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Line simplification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Additional information regarding PNIPAM datasets 13
5.1 Direct comparison of PNIPAM structures produced . . . . . . . . . . . . . 13
5.2 Parameter distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Sensitivity to the diffuse tail 18

7 Evolution of posterior probability during sampling 19

8 Definition of χ2 22

Supporting files can be found on the Zenodo Archive, DOI: 10.5281/zenodo.4361678.

2

https://doi.org/10.5281/zenodo.4361678


1 Materials

Native oxide silicon wafers (100 mm diameter, 10 mm thick) were purchased from EL–CAT
Inc. (USA). Potassium hydroxide (Chem-Supply Pty. Ltd., AR grade) was used during
surface preparation steps. Surface functionalization reagents triethylamine (99 %), 2-
bromoisobutyryl bromide (>99 %) and (3-aminopropyl)triethoxysilane (>99 %) were pur-
chased from Sigma–Aldrich and used as received. Tetrahydrofuran (Honeywell Burdick
and Jackson, >99 %) was dried over 4�A molecular sieves (ACROS Organics) before use.
N-isopropylacrylamide (Sigma–Aldrich, 98 %) was stored below 4 °C and purified by crys-
tallization from hexane prior to use. Polymerization reagents L-ascorbic acid (≥99 %),
1,1,4,7,10,10-hexamethyltriethylenetetramine (97 %) and copper(II) bromide (99.999 %)
were purchased from Sigma–Aldrich and used as received. Methanol (Sigma–Aldrich, an-
hydrous, 99.8 %) was used as received and MilliQ water (Merck Millipore, 18.2 MΩ cm at
25 °C) was used throughout. Neutron reflectometry (NR) measurements were performed
using pre-filtered (0.45 µm disk filters) deuterium oxide (D2O) or MilliQ water.

The polymerization was carried out according to the method of Humphreys et al.
(2016).
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2 Nested sampling

2.1 Model selection

In Fig. 3, the model evidence is shown for increasing numbers of spline knots; the cor-
responding SLD and reflectometry profiles are shown here in Fig. S1. All SLD profiles
match the structure used to generate the reflectometry data, while all models above two
knots exhibit equally excellent fits to the reflectometry data.

Figure S1: Structural output from the nested sampling process used to estimate the model
ratio evidence, corresponding to Fig. 3, processed to be analogous to the output of the
MCMC processes used in this work (using dynesty.utils.resample equal). a-g) show
that the nested sampler (red) converged on the true structure (black) for all numbers
of knots used. (h) Corresponding reflectometry profiles are shown against the simulated
data; fit quality is virtually identical for models with more than two knots.
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2.2 Stopping criterion

Here we used the default dynesty stopping criterion (as of version 1.0.1):

Sp(n)

0.02
< 1 (S1)

where Sp is the posterior stopping function and n is the total number of Monte Carlo
realizations used to generate the posterior stopping function (we use n = 128, the default
value). Here Sp is taken as the fractional sample standard deviation in the approximated
Kullback–Leibler divergence.
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3 Prior characterization

3.1 Determination of PNIPAM SLD

Widmann et al. (2019) convincingly show that the amide in PNIPAM can become deuter-
ated by exposure to D2O vapor. This H-D exchange appears to occur over approximately
three days at 90 % relative humidity and a temperature of 26.5 °C (Widmann et al., 2019).
It is expected that this H-D exchange would occur faster in a D2O solution, rather than
vapor, but this has not been confirmed.

To measure the SLD of deuterated PNIPAM, we undertook the following experiment.
PNIPAM brushes, grown using the grafting-from recipe described above, were created on
two 100 mm silicon wafers in identical conditions. These brushes had dry thicknesses of
approximately 235�A as measured by NR. After an initial measurement in atmospheric
conditions, the wafers were immersed in water for three days — one in H2O and one
in D2O. The wafers were then removed from the water, quickly dried under nitrogen,
and placed under vacuum on the PLATYPUS beamline. Reflectometry profiles were
measured from the wafers at room temperature and 5 mbar of dry air pressure, before the
temperature was increased to 50 °C then 100 °C, where additional profiles were acquired.

We conclude that the SLD of pure hydrogenated PNIPAM is 0.72× 10−6�A−2
, which

corresponds to a theoretical density of 0.973 g cm−3, or a monomer volume of 193�A3
. If

the amide proton were to fully exchange using this monomer volume the calculated SLD

would be 1.25× 10−6�A−2
. The measured SLD of the PNIPAM film soaked in D2O was

≈1.0× 10−6�A−2
, which is higher than the hydrogenated SLD, but less than the calculated

value for full exchange. We attribute this difference in calculated and measured deuterated
SLD to slow exchange kinetics. In the manuscript, the SLD of PNIPAM is allowed to

vary between 0.72× 10−6�A−2
and 1.25× 10−6�A−2

.

Figure S2: a) Swelling ratio and b) SLD of PNIPAM films in different conditions. The
two films had been exposed to liquid H2O or D2O for three days before the experiment
was conducted. The swelling behavior is similar for H2O and D2O, but the layer SLD for
the D2O exposed wafer is significantly higher.
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3.2 Characterization of PNIPAM wafer

The brush-coated wafer used for the demonstration of the model was characterized ex-
tensively prior to analysis by NR. First, the evenness of the polymer brush coating is
confirmed with an ellipsometry map of the surface (Fig. S3), which reveals that the thick-
ness of the area varies between 117�A and 124�A. This is an excellent degree of uniformity
from a brush synthesis and indicates that the grafting density and molecular weight of
the brush is even across the surface. In the situation where uneven coatings are unavoid-
able, the method detailed in this work can still be applied through incoherent averaging
techniques (Johnson et al., 2019).

Fig. S4 shows the result of co-refining (Nelson and Prescott, 2019) data from the PNI-
PAM brush in air, D2O at 40 °C, and a PNIPAM contrast-matched H2O:D2O mix (CM)
at 40 °C. In the CM dataset, the main contribution to the reflectometry profile comes
from the native oxide layer, so this contrast is particularly well suited to determining its
structure. The D2O dataset was included to enable the silica layer’s porosity to be deter-
mined. Here, the silica layer structure was shared between datasets, allowing the accurate
determination of its structure as shown in Fig. S5 and thereby improving the robustness
of the method, in particular improving the sensitivity of the analysis to the brush VF
profile. In both the CM and D2O datasets, the collapsed polymer layer was modeled

using two slabs, the SLD of which was allowed to vary from 0.72�A−2
to 1.25× 10−6�A−2

to account for the deuteration of the amide. Parameters in the different polymer layers
were not linked, as the intention was to determine the silica layer structure.

The silica layer structure produced by this process is shown in Fig. S5 and indicates

Figure S3: Ellipsometry map of the wafer used. The circle around the perimeter indicates
the physical size of the wafer, the 32 × 50 mm rectangle in the center indicates size and
location of the illuminated area in the reflectometry experiment.
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Figure S4: a) SLD profiles and b) corresponding optimized reflectometry profiles used
to characterize the silica layer and dry PNIPAM layer thickness. 400 profiles from PT-
MCMC sampling are plotted to indicate the narrow spread of viable profiles. Data are
from PNIPAM in air at ambient conditions, PNIPAM in D2O and CM solution at 40 °C.

Figure S5: Volume fraction profile of the silica native-oxide layer, derived from charac-
terization shown in Fig. S4. The thickness and SLD distributions are shown below in
Fig. S6.

that there is a broad transition between silicon and the native silica layer. Here, the
roughness is approximately half the thickness of the oxide layer, which changes the effec-
tive SLD of the silica layer. While it would have been possible to constrain the roughness,
this would have placed unjustified assumptions on the structure of the silica layer. The
interfacial volume is approximated by first determining the fraction of solvent in the dry

film, taking the SLD of pure PNIPAM as 0.72× 10−6�A−2
and assuming all voids in the

film are filled with H2O. The dry thickness is then multiplied by the polymer fraction in
the dry film to yield the interfacial volume (Fig. S7).

PT-MCMC initialized from a prior distribution produced PDFs for hydrated SiO2

thickness, roughness, SLD, and porosity, (Fig. S5, S6) as well as narrowing our estimate for
the interfacial volume of the polymer (Fig. S7). Truncated normal distributions (Fig. S6,
S7) with bounds equal to the 95 % confidence intervals were used to encode these values
in subsequent analysis.
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Figure S6: Selected parameter distributions taken from a PT-MCMC treatment of the
air-D2O-CM objective (see Fig. S4). The outermost vertical dashed lines in the plots along
the diagonal bound the 95 % confidence interval while the middle indicates the median.
The red profiles are the truncated normal distributions used to encode these profiles in
the subsequent analysis of the polymer thermoresponse.
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air-D2O-CM objective (see Fig. S4). The outermost vertical dashed lines in the plots along
the diagonal bound the 95 % confidence interval while the middle indicates the median.
The red profiles are the truncated normal distributions used to encode these profiles in
the subsequent analysis of the polymer thermoresponse. The correlation plot for the dry
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4 Model construction

4.1 FreeformVFP parameterization

The FreeformVFP model acts as a wrapper for a PCHIP spline, transforming physi-
cally meaningful parameters into a spline. Our approach ensures that the profile can be
meaningfully constrained, with only physically allowable profiles being produced. The
programmatic implementation can be found in FreeformVFP.py (included in the sup-
porting files and also in the refnx-models repository1) and is illustrated in Fig. 1; the full
list of parameters as used within the spline and as seen by the user are given in Table S2.

Table S1: Parameter bounds used for solvated sample analyses

parameter lower upper
model parameters

scale factor 0.95 1.05
background 1× 10−8 2× 10−6

material parameters

ρD2O
6× 10−6�A−2

6.36× 10−6�A−2

ρpolymer 0.72× 10−6�A−2
1.25× 10−6�A−2

silica layer parameters
thickness † †
roughness † †
VF solvent † †

polymer layer parameters

dinitial 5�A 15�A
φinitial 0.3 0.9
A † †
Z1 0.01 1
f1 0.15 1
Z2 0.01 1
f2 0.15 1
Z3 0.01 1
f3 0.15 1
Z4 0.01 1
f4 0.15 1

†: parameter constraints are informed by the characterization documented in Section 3.2
and are implemented via a truncated normal distribution (see Figures S6 and S7)

1User-contributed reflectometry models, refnx-models: https://github.com/refnx/refnx-models/
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Table S2: Relation between the user-facing parameters and those used by the PCHIP
splines in FreeformVFP

spline relationship user

φ−1, φ0 φ−1, φ0 = φinitial φinitial

φk+1,
φk+2

φk+1, φk+2 = 0 —

ẑ−1 ẑ−1 = −1.1 —

ẑ0 ẑ0 = 0 —

ẑk+1 ẑk+1 = 1 —

ẑk+2 ẑk+2 = 2.1 —

φi φi = φi−1fi fi

E E = A−φinitialdinitial∫ 1
0 φ dẑ

A

ẑi ẑi =
∑i

l=1
Zl∑k+1

j=1 Zj

Zj

4.2 Line simplification algorithm

The line simplification algorithm employed by refnx (based on the algorithm used by
Kienzle et al. (2011) in the Refl1d package) increases the slab size within the constraint:

structure.contract > (ρmax − ρmin)× (zstart − zend)

where structure.contract is a tuning parameter that sets a maximum for the product
of the slab thickness and the change in SLD from the proceeding slab. For a general
overview of simplification methods in reflectometry see the work of Russell (1990). In
Fig. S8, structure.contract is increased from 0.5 to 20, resulting in more stepped
SLD profiles where the freeform curve is discretised into fewer slabs. Fig. S8 shows that
values between 1 and 5 do not reduce the validity of the resulting reflectivity profile
whilst making a small but significant difference in computation time. Computation time
was approximated by measuring the time taken to calculate the reflection produced by
the structure in Fig. S8, averaged over 400 iterations. In the analysis of the PNIPAM
thermocollapse (Fig. 4), structure.contract is set to 1 (corresponding to the dashed
line in Fig. S8c), as validity was a higher priority than efficiency.
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Figure S8: (a) SLD profiles and (b) corresponding reflectometry profiles as the
structure.contract parameter is increased from 0.5 to 20. The (c, squares) result-
ing mean squared error (as compared to the structure.contract = 0.5 profile) and (c,
circles and error-bars) computation time are also shown, plotted against the total num-
ber of slabs in the model (which decrease with increasing structure.contract). This
profiling was performed using version 0.1.16 of refnx.

5 Additional information regarding PNIPAM datasets

5.1 Direct comparison of PNIPAM structures produced

The profiles with the highest posterior probability were taken from those shown in Fig. 4
and plotted on the same axes in Fig. S9 for direct comparison. The profiles follow a
consistent trend from swollen at low temperatures to collapsed at high temperatures.
The reader is referred to the work of Ballauff and Borisov (2016) and Baulin and Halperin
(2003) for further discussion of the significance of these structures and their implications
for the physical properties of the brush as it undergoes the thermotransition.

5.2 Parameter distributions

The parameter distributions for the polymer parameters are given as histograms in Fig. S10
through S15. We stress that it is the distribution of structures (i.e., volume fraction pro-
files) that we are interested in, not the distribution of parameters; this is because it is
the structures that are of experimental interest and there are possibly multiple parameter
configurations that correspond to a single VF profile. Consequently, these parameter dis-
tributions are included for the sake of clarity and to allow our method to be more easily

13
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Figure S9: Profiles of best fit taken from Fig. 4, plotted on the same axes for direct
comparison.

followed, not because they offer extra information regarding the physical structure of the
system.

It should be noted that the posterior distribution for the PNIPAM SLD varies between
datasets. Ideally, this value would either be constant or monotonically increasing (as
the PNIPAM amide proton is slowly exchanged for deuterium). However, this change
in PNIPAM SLD has a minimal effect on the SLD profile produced, being comparable
to an uncertainty in the interfacial volume of ±3.5�A. SLD and interfacial volume are
covariant in this modeling approach, as the same SLD profile can be produced with a lower
interfacial volume or a higher polymer SLD. Furthermore, all posteriors have a spread of
SLD values across the bounded range. As such, the differences in posterior distribution
for the PNIPAM SLD are less than the range which we would expect NR to be sensitive
to (for diffuse layers) and have minimal effect on the output of our methodology.
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4 6 8 0.8 1.0 1.2 0.100 0.125 0.150 0.175 0.200 111 112 113

0.010 0.012 0.014 0.016 0.05 0.10 0.15 0.20 0.0 0.2 0.4 0.6 0.4 0.6 0.8 1.0

0.15 0.16 0.17 0.18 0.19 0.85 0.90 0.95 1.00 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure S10: Parameter distributions corresponding to the 20 °C dataset in Fig. 4.

2 4 6 8 0.8 1.0 1.2 0.100 0.125 0.150 0.175 0.200 111 112 113

0.010 0.012 0.014 0.016 0.018 0.05 0.10 0.15 0.20 0.3 0.4 0.5 0.4 0.6 0.8 1.0

0.16 0.17 0.18 0.19 0.20 0.85 0.90 0.95 1.00 0.5 0.6 0.7 0.4 0.6 0.8

Figure S11: Parameter distributions corresponding to the 25 °C dataset in Fig. 4.
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Figure S12: Parameter distributions corresponding to the 30 °C dataset in Fig. 4.
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Figure S13: Parameter distributions corresponding to the 32 °C dataset in Fig. 4.
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Figure S14: Parameter distributions corresponding to the 35 °C dataset in Fig. 4.
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Figure S15: Parameter distributions corresponding to the 40 °C dataset in Fig. 4.
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6 Sensitivity to the diffuse tail

Extended polymer brushes are extremely diffuse interfaces. The ‘tails’ of these brushes are
dilute, with the polymer having a small difference in SLD relative to the solvent, making
resolution of tail structure difficult (e.g., Fig. S16). The low-contrast and diffuse structure
of these brush tails make their analysis difficult; this is qualitatively shown in Fig. S17a,
where structurally distinct profiles produce similar reflectometry profiles. Reflectometry is
not totally insensitive to the shape of these tails (e.g., Fig. S17b); however the sensitivity
is low and that incorporation of additional constraints (such as the interfacial volume) is
important to a successful analysis.

Figure S16: Expanded version of 7a plotted with broader z axis bounds to highlight the
spread of profiles that are possible in the tail of the brush. The dashed line corresponds
to the differential evolution fit, and is identical to the best fit from PT-MCMC. The
reflectometry profile is inset.

Accurately determining and constraining the interfacial volume of polymer aids in an
accurate reproduction of the polymer tail. As NR is more sensitive to the higher VF inner
region of the brush (i.e., 0�A to 500�A in Fig. S17, where the contrast is greater), these will
be reproduced accurately, consequently constraining the volume of polymer in the diffuse
tail.
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structure but different diffuse decays. Corresponding reflectivity profiles are inset, with
the 20 °C data for comparison; the differences between the reflectivity profiles is most
distinct at the Q-range shown. While reflectivity is sensitive to the structure of the diffuse
structure, the changes in the reflectometry profiles are slight; constraints are necessary to
prevent multimodality. One implication of figure a) in particular is that it is important
that the interfacial volume of the polymer be correctly constrained.

7 Evolution of posterior probability during sampling

One method for inspecting the progress of an MCMC sampling process is to examine the
posterior probability as a function of step number; this gives an indication of the number of
modes, their relative probability, and how quickly walkers are migrating between modes.
Fig. S18 shows the posterior probability as a function of the step number for the PT-
MCMC process that produced Fig. 4 (best achievable fits to the temperature series).
Some objectives converge on the optimum rapidly (within ≈5000 steps), whilst others
have not fully converged by 75 000 steps. In the case of the 30 °C and 35 °C datasets,
the optimum is not found until many thousands of steps, while for the 32 °C dataset
the apparent optimum is located reasonably rapidly (10 000 steps) but convergence is
slow (60 000 steps). From these cases we can conclude that convergence is slower when
there are two structures with similar posterior probabilities. Fig. S19 shows the posterior
probability as a function of the step number for the PT-MCMC process that produced
Fig. 7 (exploration of the impact of constraining the interfacial volume). Convergence
is clearly faster for the structures with tighter bounds — a direct result of the smaller
parameter space.

The purpose of PT-MCMC sampling here is to give an indication of the families of
profiles that match the collected reflectometry data. Specifically, we are interested in the
number of profile modes that exist and the distribution of viable profiles around these
modes. Given infinite time (that is, when the process is at equilibrium) the distribution of
parameters produced by PT-MCMC will converge on the posterior distribution, allowing
it to be precisely determined (as we show in Fig. S7 and S6), even for multimodal profiles.
However, in most practical instances, a precise approximation of the posterior is not
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Figure S18: Log probability as a function of step number for the PNIPAM brush at
different temperatures, with the position at step number 75 000 corresponding to VF
and reflectivity profiles in Fig. 4. Some objectives (a,b) converge on the apparent global
optimum rapidly, while others (c,e) exhibit some degree of multimodality, where two
structures possess very similar posterior probabilities; the approach to equilibrium here
is very slow. Other objectives (d) converge rapidly on a local optimum before locating a
better solution.
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Figure S19: Log probability as a function of step number for broadening interfacial volume
constraint, with the position at step number 75 000 corresponding to VF and reflectivity
profiles in Fig. 7. Broader bounds appear to increase the number of local optima and
increase convergence time. (a) cannot be directly compared to Fig. S18d as the prior
bounds were different.

required; it is sufficient to know that a) the experiment is sensitive to the structure of
interest and b) what the optimal set/s of parameters are. Fig. S18 shows that some of
the profiles in Fig. 4 do not reach equilibrium after 75 000 steps. However, PT-MCMC
serves the intended purpose of identifying multimodal solutions. If a detailed posterior
probability distribution for the accepted mode is required then point-initiated MCMC
can be used to quickly determine the distribution around the mode.

It is worth explaining an apparent contradiction between Fig. S18d and S19a: that
the convergence appears faster in Fig. S19a which has a broader interfacial volume prior
(a uniform distribution between 100�A and 115�A) than in Fig. S18d (a truncated normal
distribution between 110�A and 113�A). First we must recognize that Fig. S19a is actually
multimodal (see Fig. 7a), with both modes having identical prior probabilities, while
Fig. S18d is not multimodal. Hence the contradiction can be explained due to the tighter
prior in Fig. S18d reducing the posterior probability of one of the modes in Fig. S19a.
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8 Definition of χ2

Where χ2 is referred to in the manuscript, it is calculated using the following formula

χ2 =
L∑
n=1

(yn − ymodel,n

σn

)2
(S2)

where yn is the measured data point, ymodel,n is the corresponding model value and σn is
the statistical error on yn.
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