

Volume 54 (2021)
Supporting information for article:

Distribution rules of systematic absences and generalized de Wolff figures of merit applied to electron backscatter diffraction ab initio indexing

Ryoko Oishi-Tomiyasu, Tomohito Tanaka and Jun'ichi Nakagawa

A Search parameters and experimental patterns used in testing the software

Table 1: Search parameters
\# The input phi, sigma are assumed to contain errors within this range (degree). 1.0
\# The unit-cell scales s1, s2 computed from the bandwidths are supposed to be equal, \# if both $s 1<=s 2 *($ this.value) and s2<=s1*(this.value) hold.
3.0
\# (Used only for Bravais lattice determination) squared lattice-vector lengths \# |v1|^2, |v2|^2 are supposed to be equal, if $|v 1|^{\wedge} 2<=|v 2|^{\wedge} 2 *(1+$ this.value) \# and |v2|^2<=|v1|^2*(1+ this.value) hold. 0.05
\# The number of the generated Miller indices for computing the figure of merit M. 400^{a}
\# The upper threshold for the absolute values $|\mathrm{h}|,|\mathrm{k}|,|l|$ of the generated \# Miller indices for computing the figure of merit M .
6^{a}
\# Refine the projection center shift in the direction x, y, z ? (No: 0, Yes: 1)
\# (z-axis: perpendicular to the screen.)
111^{b}
\# Only the solutions with the figure of merit larger than this value is output.
3.0

[^0]
B Simulated patterns and the parameters used for the simulation

Figures 1-3 present the band positions and widths extracted from simulated EBSD patterns and used for testing the software. The parameters used for the simulation are as follows:

Table 2: Calculation settings used by DynamicS software

Sample AV $(k V)^{a}$	$d_{\text {min }}(\AA)^{b}$	$I_{\text {min }}(\%)^{c}$	Absorption length $(\AA)^{d}$	Exitation $\operatorname{depth}(\AA)^{e}$	Debye-Waller B: Crystal $\left(\AA^{2}\right)^{f}$	Debye-Waller B: Source $\left(\AA^{2}\right)^{g}$	
$N i$	20	0.5	15	54	42	0.74	0.3
$F e$	20	0.5	15	61	48	0.79	0.3
$Z n$	20	0.5	15	68	54	0.83	0.3

${ }^{a}$ acceleration voltage of electron beam,
${ }^{b}$ minimum lattice spacing of the reflecting lattice planes,
${ }^{c}$ minimum intensity of a reflector relative to the strongest reflector,
${ }^{d}$ IMFP (Inelastic Mean Free Path) of the electrons extrapolated from the NIST Standard Reference Database,
${ }^{e}$ mean depth of backscattering,
${ }^{f}$ Debye-Waller factor of the crystal,
${ }^{g}$ Debye-Waller factor of the source.

Figure 1: Band traces and widths extracted from a simulated pattern of $N i\left(956 \times 956 p x^{2}\right)$

Figure 2: Band traces and widths extracted from a simulated pattern of $F e(1600 \times 1152$ $p x^{2}$)

Figure 3: Band traces and widths extracted from a simulated pattern of $Z n\left(956 \times 956 p x^{2}\right)$

Figure 4: Band traces and widths extracted from a simulated pattern of Silico Ferrite of $C a$ \& $A l\left(1040 \times 1040 p x^{2}\right)$

C De Wolff figure of merit and its generalization

As a figure of merit used for powder indexing, the de Wolff M is defined as follows:

$$
M_{n}=\bar{\epsilon} / \delta
$$

where $\bar{\epsilon}$ and δ are the average discrepancy and the actual discrepancy, respectively, defined by:

$$
\begin{align*}
\bar{\epsilon} & :=Q_{n}^{o b s} / 2 N \tag{A.1}\\
\delta & :=\frac{1}{n} \sum_{i=1}^{n}\left|Q_{i}^{o b s}-Q_{i}^{c a l}\right| \tag{A.2}
\end{align*}
$$

$Q_{i}^{c a l}$: computed line closest to the observed line $Q_{i}^{o b s}$.
In order to generalize the definition of M_{n} to the sets of points in \mathbb{R}^{s}, it is important to understand why the average discrepancy is defined as (A.1), when the actual discrepancy is defined as (A.2); as explained in Wu (1988), if $q_{0}:=0<q_{1}<\cdots<q_{N}$ is specified, the average discrepancy with regard to the q_{i} 's, is defined as:

$$
\begin{equation*}
\epsilon_{W u}:=\frac{1}{4 q_{N}} \sum_{k=1}^{N}\left(q_{k}-q_{k-1}\right)^{2}, \tag{A.3}
\end{equation*}
$$

This $\epsilon_{W u}$ equals to the mean value of the distance of Q from its nearest q_{k}, where Q is assumed to be uniformly distributed in the interval $\left[0, q_{N}\right]$.

If the computed lines q_{1}, \ldots, q_{N-1} are also assumed to be uniformly distributed under the constraint $0<q_{1}<\cdots<q_{N-1}<q_{N}$, the mean value of $\epsilon_{W u}$ is given by:

$$
\begin{equation*}
\frac{1}{4 q_{N}} \frac{\int_{0}^{q_{N}} \cdots \int_{0}^{q_{2}} \sum_{k=1}^{N}\left(q_{k}-q_{k-1}\right)^{2} d q_{1} \cdots d q_{N-1}}{\int_{0}^{q_{N}} \cdots \int_{0}^{q_{2}} d q_{1} \cdots d q_{N-1}}=\frac{q_{N}}{2(N+1)} . \tag{A.4}
\end{equation*}
$$

The de Wolff average discrepancy $\bar{\epsilon}:=Q_{n}^{o b s} / 2 N$ gives a good approximation of the formula (A.4).

In order to generalize this to a general space of dimension s, we consider x_{1}, \ldots, x_{N} and $X_{1}^{\text {obs }}, \ldots, X_{n}^{\text {obs }}$ as points in some fixed domain $\Omega \subset \mathbb{R}^{s}$. In this case, it is difficult to provide a formula for the average discrepancy for the specified x_{1}, \ldots, x_{N}, as in (A.3). However, it is possible to estimate the mean value as in (A.4), if x_{1}, \ldots, x_{N} also run over Ω with uniform probability.

Suppose that X is a coordinate in Ω. If x_{1}, \ldots, x_{N-1} are uniformly distributed in Ω, and x_{N} is uniformly distributed on the boundary of Ω, we have:
$\operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right)=\left(1-\frac{\operatorname{Vol}\left(\Omega \cap B_{r}(X)\right)}{\operatorname{Vol}(\Omega)}\right)^{N-1}\left(1-\frac{\operatorname{Area}\left(\partial \Omega \cap B_{r}(X)\right)}{\operatorname{Area}(\partial \Omega)}\right)$.
where $B_{r}(X)$ is the ball with radius r and center at X of dimension $s . \partial \Omega$ is the surface of Ω. The probability density function of $\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}$ is then given by:

$$
\operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}=r\right)=-\frac{d}{d r} \operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) .
$$

Hence, if X is also uniformly distributed in Ω, the mean value of $\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}$ is given by:

$$
\begin{aligned}
E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right] & =\int_{0}^{\infty} \frac{r}{\operatorname{Vol}\left(B_{R}(0)\right)}\left(\int_{|X| \leq R} \operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}=r\right) d X\right) d r \\
& =-\frac{1}{\operatorname{Vol}\left(B_{R}(0)\right)} \int_{0}^{\infty} r \frac{d}{d r}\left(\int_{|X| \leq R} \operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) d X\right) d r \\
& =\frac{1}{\operatorname{Vol}\left(B_{R}(0)\right)} \int_{0}^{\infty}\left(\int_{|X| \leq R} \operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) d X\right) d r \\
& =\frac{1}{\operatorname{Vol}\left(B_{R}(0)\right)} \int_{|X| \leq R}\left(\int_{0}^{\infty} \operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) d r\right) d X
\end{aligned}
$$

In what follows, we shall lead the formulas for the ball $\Omega=B_{R}(0)$ of dimension s.
(Case of $s=1$)

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{R}(0) \cap B_{r}(X)\right)= \begin{cases}2 R & \text { if } r \geq R+|X|, \\
2 r & \text { if } r \leq R-|X|, \\
r+R-|X| & \text { if } R-|X| \leq r \leq R+|X| .\end{cases} \\
& \text { Area }\left(\partial B_{R}(0) \cap B_{r}(X)\right)= \begin{cases}2 & \text { if } r>R+|X|, \\
0 & \text { if } r<R-|X|, \\
1 & \text { if } R-|X|<r<R+|X| .\end{cases}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\infty} \operatorname{Prob}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) d r & =\int_{0}^{R-|X|}\left(1-\frac{r}{R}\right)^{N-1} d r+\frac{1}{2} \int_{R-|X|}^{R+|X|}\left(\frac{|X|-r+R}{2 R}\right)^{N-1} d r \\
& =-\frac{R}{N}\left[\left(1-\frac{r}{R}\right)^{N}\right]_{0}^{R-|X|}-\frac{R}{N}\left[\left(\frac{|X|-r+R}{2 R}\right)^{N}\right]_{R-|X|}^{R+|X|} \\
& =-\frac{R}{N}\left\{\left(\frac{|X|}{R}\right)^{N}-1\right\}+\frac{R}{N}\left(\frac{|X|}{R}\right)^{N}=\frac{R}{N}
\end{aligned}
$$

Therefore,

$$
E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right]=\frac{R}{N}=\frac{\max _{1 \leq i \leq N}\left\{\left|x_{i}\right|\right\}}{N}
$$

(Case of $s \neq 1$)

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{R}(0) \cap B_{r}(X)\right)= \begin{cases}\frac{\pi^{s / 2} R^{s}}{\Gamma\left(\frac{s}{2}+1\right)} & \text { if } r \geq R+|X|, \\
\frac{\pi^{s / 2} r^{s}}{\Gamma\left(\frac{s}{2}+1\right)} & \text { if } r \leq R-|X|, \\
\frac{\pi^{s / 2} r^{s}}{\Gamma\left(\frac{s}{2}+1\right)}+\frac{\pi^{(s-1) / 2}}{\Gamma\left(\frac{s+1}{2}\right)}\left\{\begin{array}{ll}
R^{s} \int_{\frac{R^{2}+|X|^{2}-r^{2}}{2 R|X|}}^{1}\left(1-t^{2}\right)^{(s-1) / 2} d t \\
-r^{s} \int_{\frac{R^{2}-|X|^{2}-r^{2}}{2 r|X|}}^{l^{2}}\left(1-t^{2}\right)^{(s-1) / 2} d t
\end{array}\right\}\end{cases} \\
& \text { Area }\left(\partial B_{R}(0) \cap B_{r}(X)\right)= \begin{cases}\frac{2 \pi^{s / 2} R^{s-1}}{\Gamma\left(\frac{s}{2}\right)} & \text { if } r>R+|X|, \\
0 & \text { if } r<R-|X|, \\
\frac{2 \pi^{(s-1) / 2} R^{s-1}}{\Gamma\left(\frac{s-1}{2}\right)} \int_{\frac{R^{2}+|X|^{2}-r^{2}}{2 R|X|}}^{1}\left(1-t^{2}\right)^{(s-3) / 2} d t & \text { if } R-|X| \leq r \leq R+|X| .\end{cases}
\end{aligned}
$$

From geometrical considerations, we have:

$$
\begin{aligned}
\operatorname{Vol}\left(B_{\frac{R-|X|+r}{2}}(0)\right) & <\operatorname{Vol}\left(B_{R}(0) \cap B_{r}(X)\right) \\
0 & <\min \left\{\operatorname{Vol}\left(B_{R}(0)\right), \operatorname{Vol}\left(B_{r}(X)\right)\right\} \\
& <\min \left\{\operatorname{Area}\left(\partial B_{R}(0) \cap B_{r}(0)\right), \text { Area }\left(\partial B_{r}(X)\right)\right\} .
\end{aligned}
$$

Hence, we have:

$$
\begin{aligned}
\int_{0}^{\infty} \operatorname{Prob}_{X}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) d r> & \int_{0}^{R-|X|}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1} d r \\
& +\int_{R-|X|}^{R}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1}\left(1-\frac{r^{s-1}}{R^{s-1}}\right) d r \\
\int_{0}^{\infty} \operatorname{Prob}_{X}\left(\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}>r\right) d r< & \int_{0}^{R-|X|}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1} d r \\
& +\int_{R-|X|}^{R+|X|}\left(1-\frac{(R-|X|+r)^{s}}{2^{s} R^{s}}\right)^{N-1} d r
\end{aligned}
$$

Using the variable transformations $r=R y$ and $r_{2}=R y_{2}$,

$$
\begin{aligned}
\frac{1}{\operatorname{Vol}\left(B_{R}(0)\right)} \int_{|X| \leq R}\left(\int_{0}^{R-|X|}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1} d r\right) d X & =\frac{s}{R^{s}} \int_{0}^{R} r_{2}^{s-1}\left(\int_{0}^{R-r_{2}}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1} d r\right) d r_{2} \\
& =s R \int_{0}^{1} y_{2}^{s-1}\left(\int_{0}^{1-y_{2}}\left(1-y^{s}\right)^{N-1} d y\right) d y_{2} \\
& =s R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}\left(\int_{0}^{1-y} y_{2}^{s-1} d y_{2}\right) d y \\
& =R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}(1-y)^{s} d y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol}\left(B_{R}(0)\right)} \int_{|X| \leq R}\left(\int_{R-|X|}^{R}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1}\left(1-\frac{r^{s-1}}{R^{s-1}}\right) d r\right) d X \\
&= \frac{s}{R^{s}} \int_{0}^{R} r_{2}^{s-1}\left(\int_{R-r_{2}}^{R}\left(1-\frac{r^{s}}{R^{s}}\right)^{N-1}\left(1-\frac{r^{s-1}}{R^{s-1}}\right) d r\right) d r_{2} \\
&= s R \int_{0}^{1} y_{2}^{s-1}\left(\int_{1-y_{2}}^{1}\left(1-y^{s}\right)^{N-1}\left(1-y^{s-1}\right) d y\right) d y_{2} \\
&= s R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}\left(1-y^{s-1}\right)\left(\int_{1-y}^{1} y_{2}^{s-1} d y_{2}\right) d y \\
&= R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}\left(1-y^{s-1}\right)\left\{1-(1-y)^{s}\right\} d y . \\
& \frac{\operatorname{Vol}\left(B_{R}(0)\right)}{} \int_{|X| \leq R}\left(\int_{R-|X|}^{R+|X|}\left(1-\frac{(R-|X|+r)^{s}}{2^{s} R^{s}}\right)^{N-1} d r\right) d X \\
&= s \int_{0}^{R} r_{2}^{s-1}\left(\int_{R-r_{2}}^{R+r_{2}}\left(1-\frac{\left(R-r_{2}+r\right)^{s}}{2^{s} R^{s}}\right)^{N-1} d r\right) d r_{2} \\
&= s R \int_{0}^{1} y_{2}^{s-1}\left(\int_{1-y_{2}}^{1+y_{2}}\left(1-\frac{\left(1-y_{2}+y\right)^{s}}{2^{s}}\right)^{N-1} d y\right) d y_{2} \\
&= 2 s R \int_{0}^{1} y_{2}^{s-1}\left(\int_{1-y_{2}}^{1}\left(1-y_{3}^{s}\right)^{N-1} d y_{3}\right) d y_{2} \quad\left(y_{3}=\frac{1-y_{2}+y}{2}\right) \\
&= 2 s R \int_{0}^{1}\left(1-y_{3}^{s}\right)^{N-1}\left(\int_{1-y_{3}}^{1} y_{2}^{s-1} d y_{2}\right) d y_{3} \quad\left(y_{3}=\frac{1-y_{2}+y}{2}\right) \\
&= 2 R \int_{0}^{1}\left(1-y_{3}^{s}\right)^{N-1}\left\{1-\left(1-y_{3}\right)^{s}\right\} d y_{3} .
\end{aligned}
$$

As a result, the lower and upper bounds of $E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right]$ are obtained:

$$
\begin{aligned}
& E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right] \\
&>R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}(1-y)^{s} d y+R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}\left(1-y^{s-1}\right)\left\{1-(1-y)^{s}\right\} d y \\
&=R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}\left\{1-y^{s-1}+y^{s-1}(1-y)^{s}\right\} d y \\
&=R \int_{0}^{1}\left(1-y^{s}\right)^{N-1} d y+R \sum_{k=1}^{s}\binom{s}{k}(-1)^{k} \int_{0}^{1}\left(1-y^{s}\right)^{N-1} y^{s-1+k} d y \\
&=\frac{R}{s} \int_{0}^{1}(1-z)^{N-1} z^{(1-s) / s} d z+\frac{R}{s} \sum_{k=1}^{s}\binom{s}{k}(-1)^{k} \int_{0}^{1}(1-z)^{N-1} z^{k / s} d z \quad\left(z=y^{s}\right) \\
&=\frac{R}{s} B(N, 1 / s)+\frac{R}{s} \sum_{k=1}^{s}\binom{s}{k}(-1)^{k} B(N, k / s+1) \\
&=\frac{R}{s} \frac{\Gamma(N) \Gamma(1 / s)}{\Gamma(N+1 / s)}+\frac{R}{s} \sum_{k=1}^{s}\binom{s}{k} \frac{(-1)^{k} k}{s N+k} \frac{\Gamma(N) \Gamma(k / s)}{\Gamma(N+k / s)} .
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right] \\
&<R \int_{0}^{1}\left(1-y^{s}\right)^{N-1}\left\{2-(1-y)^{s}\right\} d y \\
&=R \int_{0}^{1}\left(1-y^{s}\right)^{N-1} d y-R \sum_{i=1}^{s}\binom{s}{i}(-1)^{i} \int_{0}^{1}\left(1-y^{s}\right)^{N-1} y^{i} d y \\
&=\frac{R}{s} \int_{0}^{1}(1-z)^{N-1} z^{(1-s) / s} d z-\frac{R}{s} \sum_{k=1}^{s}\binom{s}{k}(-1)^{k} \int_{0}^{1}(1-z)^{N-1} z^{(1-s+k) / s} d z \quad\left(z=y^{s}\right) \\
&=\frac{R}{s} B(N, 1 / s)-\frac{R}{s} \sum_{k=1}^{s}\binom{s}{k}(-1)^{k} B(N,(k+1) / s)
\end{aligned}
$$

From $\lim _{n \rightarrow \infty} \Gamma(n) n^{z} / \Gamma(n+z)=1$, the beta function $B(x, y)=\Gamma(x) \Gamma(y) / \Gamma(x+y)$ has the asymptotic formula $B(x, y) \sim \Gamma(y) x^{-y}$. As a result, we have:

$$
E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right] \sim \frac{\Gamma(1 / s)}{s} \frac{R}{N^{1 / s}} \quad(N \rightarrow \infty)
$$

In particular, the formulas for $s=2,3$ are as follows:
(Case of point configurations in a $2 D$ ball of radius R)

$$
E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right] \sim \frac{\sqrt{\pi}}{2} \frac{R}{\sqrt{N}} \quad(N \rightarrow \infty)
$$

(Case of point configurations in a $3 D$ ball of radius R)

$$
E\left[\min _{1 \leq i \leq N}\left\{\left|X-x_{i}\right|\right\}\right] \sim \frac{\Gamma(1 / 3)}{3} \frac{R}{N^{1 / 3}} \quad(N \rightarrow \infty) .
$$

[^0]: ${ }^{a}$ The Miller indices are generated in descending order of d-values.
 ${ }^{b}$ These flag was set to 110 in the analyses without using the bandwidths.

