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A Search parameters and experimental patterns used
in testing the software

Table 1: Search parameters
# The input phi, sigma are assumed to contain errors within this range (degree).
1.0

# The unit-cell scales s1, s2 computed from the bandwidths are supposed to be equal,
# if both s1<=s2*(this.value) and s2<=s1*(this.value) hold.
3.0

# (Used only for Bravais lattice determination) squared lattice-vector lengths
# |v1|^2, |v2|^2 are supposed to be equal, if |v1|^2<=|v2|^2*(1+ this.value)

# and |v2|^2<=|v1|^2*(1+ this.value) hold.
0.05

# The number of the generated Miller indices for computing the figure of merit M.
400a

# The upper threshold for the absolute values |h|,|k|,|l| of the generated
# Miller indices for computing the figure of merit M.
6a

# Refine the projection center shift in the direction x, y, z? (No: 0, Yes: 1)
# (z-axis: perpendicular to the screen.)
1 1 1b

# Only the solutions with the figure of merit larger than this value is output.
3.0

aThe Miller indices are generated in descending order of d-values.
bThese flag was set to 1 1 0 in the analyses without using the bandwidths.

B Simulated patterns and the parameters used for the
simulation

Figures 1–3 present the band positions and widths extracted from simulated EBSD patterns
and used for testing the software. The parameters used for the simulation are as follows:
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Table 2: Calculation settings used by DynamicS software
Sample AV (kV )a dmin (Å)b Imin (%)c Absorption

length (Å)d
Exitation
depth (Å)e

Debye-Waller B:
Crystal (Å2)f

Debye-Waller B:
Source (Å2)g

Ni 20 0.5 15 54 42 0.74 0.3
Fe 20 0.5 15 61 48 0.79 0.3
Zn 20 0.5 15 68 54 0.83 0.3

aacceleration voltage of electron beam,
bminimum lattice spacing of the reflecting lattice planes,
cminimum intensity of a reflector relative to the strongest reflector,
dIMFP (Inelastic Mean Free Path) of the electrons extrapolated from the NIST Standard Reference

Database,
emean depth of backscattering,
fDebye-Waller factor of the crystal,
gDebye-Waller factor of the source.

Figure 1: Band traces and widths extracted from a simulated pattern of Ni (956×956 px2)
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Figure 2: Band traces and widths extracted from a simulated pattern of Fe (1600 × 1152
px2)

Figure 3: Band traces and widths extracted from a simulated pattern of Zn (956×956 px2)
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Figure 4: Band traces and widths extracted from a simulated pattern of Silico Ferrite of Ca
& Al (1040× 1040 px2)
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C De Wolff figure of merit and its generalization

As a figure of merit used for powder indexing, the de Wolff M is defined as follows:

Mn = ϵ̄/δ,

where ϵ̄ and δ are the average discrepancy and the actual discrepancy, respectively, defined
by:

ϵ̄ := Qobs
n /2N, (A.1)

δ :=
1

n

n∑
i=1

∣∣Qobs
i −Qcal

i

∣∣, (A.2)

Qcal
i : computed line closest to the observed line Qobs

i .

In order to generalize the definition of Mn to the sets of points in Rs, it is important to
understand why the average discrepancy is defined as (A.1), when the actual discrepancy
is defined as (A.2); as explained in Wu (1988), if q0 := 0 < q1 < · · · < qN is specified, the
average discrepancy with regard to the qi’s, is defined as:

ϵWu :=
1

4qN

N∑
k=1

(qk − qk−1)
2, (A.3)

This ϵWu equals to the mean value of the distance of Q from its nearest qk, where Q is
assumed to be uniformly distributed in the interval [0, qN ].

If the computed lines q1, . . . , qN−1 are also assumed to be uniformly distributed under
the constraint 0 < q1 < · · · < qN−1 < qN , the mean value of ϵWu is given by:

1

4qN

∫ qN
0

· · ·
∫ q2
0

∑N
k=1(qk − qk−1)

2dq1 · · · dqN−1∫ qN
0

· · ·
∫ q2
0

dq1 · · · dqN−1

=
qN

2(N + 1)
. (A.4)

The de Wolff average discrepancy ϵ̄ := Qobs
n /2N gives a good approximation of the

formula (A.4).
In order to generalize this to a general space of dimension s, we consider x1, . . . , xN and

Xobs
1 , . . . , Xobs

n as points in some fixed domain Ω ⊂ Rs. In this case, it is difficult to provide
a formula for the average discrepancy for the specified x1, . . . , xN , as in (A.3). However, it is
possible to estimate the mean value as in (A.4), if x1, . . . , xN also run over Ω with uniform
probability.

Suppose that X is a coordinate in Ω. If x1, . . . , xN−1 are uniformly distributed in Ω,
and xN is uniformly distributed on the boundary of Ω, we have:

Prob

(
min

1≤i≤N
{|X − xi|} > r

)
=

(
1− Vol (Ω ∩Br(X))

Vol(Ω)

)N−1(
1− Area (∂Ω ∩Br(X))

Area(∂Ω)

)
.

where Br(X) is the ball with radius r and center at X of dimension s. ∂Ω is the surface of
Ω. The probability density function of min

1≤i≤N
{|X − xi|} is then given by:

Prob

(
min

1≤i≤N
{|X − xi|} = r

)
= − d

dr
Prob

(
min

1≤i≤N
{|X − xi|} > r

)
.
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Hence, if X is also uniformly distributed in Ω, the mean value of min
1≤i≤N

{|X − xi|} is

given by:

E

[
min

1≤i≤N
{|X − xi|}

]
=

∫ ∞

0

r

Vol(BR(0))

(∫
|X|≤R

Prob

(
min

1≤i≤N
{|X − xi|} = r

)
dX

)
dr

= − 1

Vol(BR(0))

∫ ∞

0

r
d

dr

(∫
|X|≤R

Prob

(
min

1≤i≤N
{|X − xi|} > r

)
dX

)
dr

=
1

Vol(BR(0))

∫ ∞

0

(∫
|X|≤R

Prob

(
min

1≤i≤N
{|X − xi|} > r

)
dX

)
dr

=
1

Vol(BR(0))

∫
|X|≤R

(∫ ∞

0

Prob

(
min

1≤i≤N
{|X − xi|} > r

)
dr

)
dX.

In what follows, we shall lead the formulas for the ball Ω = BR(0) of dimension s.

(Case of s = 1)

Vol (BR(0) ∩Br(X)) =


2R if r ≥ R+ |X|,
2r if r ≤ R− |X|,
r +R− |X| if R− |X| ≤ r ≤ R+ |X|.

Area (∂BR(0) ∩Br(X)) =


2 if r > R+ |X|,
0 if r < R− |X|,
1 if R− |X| < r < R+ |X|.

Hence,∫ ∞

0

Prob

(
min

1≤i≤N
{|X − xi|} > r

)
dr =

∫ R−|X|

0

(
1− r

R

)N−1

dr +
1

2

∫ R+|X|

R−|X|

(
|X| − r +R

2R

)N−1

dr

= −R

N

[(
1− r

R

)N]R−|X|

0

− R

N

[(
|X| − r +R

2R

)N
]R+|X|

R−|X|

= −R

N

{(
|X|
R

)N

− 1

}
+

R

N

(
|X|
R

)N

=
R

N
.

Therefore,

E

[
min

1≤i≤N
{|X − xi|}

]
=

R

N
=

max1≤i≤N{|xi|}
N

.
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(Case of s ̸= 1)

Vol (BR(0) ∩Br(X)) =



πs/2Rs

Γ
(
s
2
+ 1

) if r ≥ R+ |X|,

πs/2rs

Γ
(
s
2
+ 1

) if r ≤ R− |X|,

πs/2rs

Γ
(
s
2
+ 1

) +
π(s−1)/2

Γ
(
s+1
2

)


Rs

∫ 1

R2+|X|2−r2

2R|X|

(1− t2)(s−1)/2dt

−rs
∫ 1

R2−|X|2−r2

2r|X|

(1− t2)(s−1)/2dt


if R− |X| ≤ r ≤ R+ |X|.

Area (∂BR(0) ∩Br(X)) =



2πs/2Rs−1

Γ
(
s
2

) if r > R+ |X|,

0 if r < R− |X|,
2π(s−1)/2Rs−1

Γ
(
s−1
2

) ∫ 1

R2+|X|2−r2

2R|X|

(1− t2)(s−3)/2dt if R− |X| ≤ r ≤ R+ |X|.

From geometrical considerations, we have:

Vol
(
BR−|X|+r

2
(0)
)
< Vol (BR(0) ∩Br(X)) < min{Vol (BR(0)) ,Vol (Br(X))},

0 < Area (∂BR(0) ∩Br(X)) < min{Area (∂BR(0)) ,Area (∂Br(X))}.

Hence, we have:∫ ∞

0

ProbX

(
min

1≤i≤N
{|X − xi|} > r

)
dr >

∫ R−|X|

0

(
1− rs

Rs

)N−1

dr

+

∫ R

R−|X|

(
1− rs

Rs

)N−1(
1− rs−1

Rs−1

)
dr,∫ ∞

0

ProbX

(
min

1≤i≤N
{|X − xi|} > r

)
dr <

∫ R−|X|

0

(
1− rs

Rs

)N−1

dr

+

∫ R+|X|

R−|X|

(
1− (R− |X|+ r)s

2sRs

)N−1

dr.

Using the variable transformations r = Ry and r2 = Ry2,

1

Vol(BR(0))

∫
|X|≤R

(∫ R−|X|

0

(
1− rs

Rs

)N−1

dr

)
dX =

s

Rs

∫ R

0

rs−1
2

(∫ R−r2

0

(
1− rs

Rs

)N−1

dr

)
dr2

= sR

∫ 1

0

ys−1
2

(∫ 1−y2

0

(1− ys)
N−1

dy

)
dy2

= sR

∫ 1

0

(1− ys)
N−1

(∫ 1−y

0

ys−1
2 dy2

)
dy

= R

∫ 1

0

(1− ys)
N−1

(1− y)sdy.
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1

Vol(BR(0))

∫
|X|≤R

(∫ R

R−|X|

(
1− rs

Rs

)N−1(
1− rs−1

Rs−1

)
dr

)
dX

=
s

Rs

∫ R

0

rs−1
2

(∫ R

R−r2

(
1− rs

Rs

)N−1(
1− rs−1

Rs−1

)
dr

)
dr2

= sR

∫ 1

0

ys−1
2

(∫ 1

1−y2

(1− ys)
N−1

(1− ys−1)dy

)
dy2

= sR

∫ 1

0

(1− ys)
N−1

(1− ys−1)

(∫ 1

1−y

ys−1
2 dy2

)
dy

= R

∫ 1

0

(1− ys)
N−1

(1− ys−1){1− (1− y)s}dy.

1

Vol(BR(0))

∫
|X|≤R

(∫ R+|X|

R−|X|

(
1− (R− |X|+ r)s

2sRs

)N−1

dr

)
dX

=
s

Rs

∫ R

0

rs−1
2

(∫ R+r2

R−r2

(
1− (R− r2 + r)s

2sRs

)N−1

dr

)
dr2

= sR

∫ 1

0

ys−1
2

(∫ 1+y2

1−y2

(
1− (1− y2 + y)s

2s

)N−1

dy

)
dy2

= 2sR

∫ 1

0

ys−1
2

(∫ 1

1−y2

(1− ys3)
N−1

dy3

)
dy2 (y3 =

1− y2 + y

2
)

= 2sR

∫ 1

0

(1− ys3)
N−1

(∫ 1

1−y3

ys−1
2 dy2

)
dy3 (y3 =

1− y2 + y

2
)

= 2R

∫ 1

0

(1− ys3)
N−1 {1− (1− y3)

s}dy3.

As a result, the lower and upper bounds of E [min1≤i≤N{|X − xi|}] are obtained:

E

[
min

1≤i≤N
{|X − xi|}

]
> R

∫ 1

0

(1− ys)
N−1

(1− y)sdy +R

∫ 1

0

(1− ys)
N−1

(1− ys−1){1− (1− y)s}dy

= R

∫ 1

0

(1− ys)
N−1 {1− ys−1 + ys−1(1− y)s}dy

= R

∫ 1

0

(1− ys)
N−1

dy +R

s∑
k=1

(
s
k

)
(−1)k

∫ 1

0

(1− ys)
N−1

ys−1+kdy

=
R

s

∫ 1

0

(1− z)
N−1

z(1−s)/sdz +
R

s

s∑
k=1

(
s
k

)
(−1)k

∫ 1

0

(1− z)
N−1

zk/sdz (z = ys)

=
R

s
B(N, 1/s) +

R

s

s∑
k=1

(
s
k

)
(−1)kB(N, k/s+ 1)

=
R

s

Γ(N)Γ(1/s)

Γ(N + 1/s)
+

R

s

s∑
k=1

(
s
k

)
(−1)kk

sN + k

Γ(N)Γ(k/s)

Γ(N + k/s)
.

8



E

[
min

1≤i≤N
{|X − xi|}

]
< R

∫ 1

0

(1− ys)N−1{2− (1− y)s}dy

= R

∫ 1

0

(1− ys)N−1dy −R

s∑
i=1

(
s
i

)
(−1)i

∫ 1

0

(1− ys)
N−1

yidy

=
R

s

∫ 1

0

(1− z)
N−1

z(1−s)/sdz − R

s

s∑
k=1

(
s
k

)
(−1)k

∫ 1

0

(1− z)
N−1

z(1−s+k)/sdz (z = ys)

=
R

s
B(N, 1/s)− R

s

s∑
k=1

(
s
k

)
(−1)kB(N, (k + 1)/s).

From limn→∞ Γ(n)nz/Γ(n + z) = 1, the beta function B(x, y) = Γ(x)Γ(y)/Γ(x + y)
has the asymptotic formula B(x, y) ∼ Γ(y)x−y. As a result, we have:

E

[
min

1≤i≤N
{|X − xi|}

]
∼ Γ(1/s)

s

R

N1/s
(N → ∞).

In particular, the formulas for s = 2, 3 are as follows:

(Case of point configurations in a 2D ball of radius R)

E

[
min

1≤i≤N
{|X − xi|}

]
∼

√
π

2

R√
N

(N → ∞).

(Case of point configurations in a 3D ball of radius R)

E

[
min

1≤i≤N
{|X − xi|}

]
∼ Γ(1/3)

3

R

N1/3
(N → ∞).
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