

Volume 54 (2021)
Supporting information for article:

The advanced treatment of hydrogen bonding in quantum crystallography

Lorraine A. Malaspina, Alessandro Genoni, Dylan Jayatilaka, Michael J. Turner, Kunihisa Sugimoto, Eiji Nishibori and Simon Grabowsky

(a) HF/def2-TZVP

(c) B3PW91/def2-TZVP

(b) B3LYP/def2-TZVP

(d) B3PW91/6-311++G(d,p)

Figure S1. Molecular structures of 8 HQ HMal after HARs at four different levels of theory. Distances are given in \AA. ADPs are given at 50% probability level.

(a) HF/def2-TZVP

(c) B3PW91/def2-TZVP

(b) B3LYP/def2-TZVP

(d) B3PW91/6-311++G(d,p)

Figure S2. Molecular structures of Mg HMal after HARs at four different levels of theory. Distances are given in \AA. ADPs are given at 50% probability level.

(a) HF/def2-TZVP

(b) B3LYP/def2-TZVP

Figure S3. Residual electron density distributions of 8HQ HMal after HARs at two different levels of theory. Yellow=positive, light-blue=negative. Isovalues are $\pm 0.10 \mathrm{e} / \AA^{3}$.

Figure S4. Residual electron density distributions of 8HQ HMal after HARs at two different levels of theory. Yellow=positive, light-blue=negative. Isovalues are $\pm 0.15 \mathrm{e} / \AA^{3}$.

Figure S5. Residual electron density distributions of 8HQ HMal after HARs at four different levels of theory. Yellow=positive, light-blue=negative. Isovalues are $\pm 0.15 \mathrm{e} / \AA^{3}$.

Figure S6. Comparison between the Gaussian-HAR refinement at the B3PW91/6-311++G(d,p) level of theory and the regular HAR at the HF/def2-TZVP level of theory for 8HQ HM. First row: Fractal dimension plots of the residual electron density according to Meindl and Henn [1]. Second row: Normal probability plots.

Figure S7. Comparison between the Gaussian-HAR refinement at the B3PW91/6-311++G(d,p) level of theory and the regular HAR at the HF/def2-TZVP level of theory for 8HQ HM. First row: DRK-plots [2]. Second and third rows: Scatter plots.

(a) AGA HAR-ELMO

(c) AGA HAR-ELMO

(e) AGA HAR-ELMO

(b) AGA HAR

(d) AGA HAR

(f) AGA HAR

Figure S8. Comparison between the HAR-ELMO refinement and the regular HAR of L-Ala-Gly-L-Ala. First row: Molecular structures with refined ADPs at 50\% probability. Second row: Fractal dimension plots of the residual electron density according to Meindl and Henn [1]. Third row: Normal probability plots.

Figure S9. Comparison between the HAR-ELMO refinement and the regular HAR of L-Ala-Gly-L-Ala. First row: DRK-plots [2]. Second and third rows: Scatter plots.

Figure S10. Comparison between the HAR refinement (HF/6-311G(d,p) with cluster charges and dipoles) and XCW fitting (HF/6-311G(d,p) without cluster charges and dipoles) models of xylitol. First row: Deformation density map at an isovalue of $\pm 0.08 \mathrm{e}^{-3}$, red = positive, blue = negative. Second row: Fractal dimension plots of the residual electron density according to Meindl and Henn [1]. Third row: Normal probability plots.

Figure S11. Comparison between the HAR refinement and XCW fitting models of xylitol. First row: DRK-plots [2]. Second and third rows: Scatter plots.

References

1. K. Meindl and J. Henn, Acta Cryst. A, 2008, 64, 404-418.
2. R. Herbst-Irmer and D. Stalke, Acta Cryst. B, 2017, 73, 531-543.
