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1. Comparison of ptychography with other x-ray nanoimaging approaches

In the main text, we have chosen to consider x-ray ptychography as a dose-efficient

imaging method with no optics-imposed limit to spatial resolution. Optics-based full-

field x-ray imaging is frequently done using Fresnel zone plates which have a focusing

efficiency in theory of up to about 20% (Kirz, 1974; Schneider, 1997), but only about

1–5% in practice for sub-30 nm resolution multi-keV x-ray zone plates (Jefimovs et al.,

2007; Uhlén et al., 2014; Chang & Sakdinawat, 2014; Mohacsi et al., 2015; Mohacsi

et al., 2017; Li et al., 2020). Another very popular and successful approach for imag-

ing a large field of view is x-ray nanoholography using a nanofocus point source and
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geometric magnification onto a scintillator-based detector (Mokso et al., 2007), but

the scintillator detectors used often have quantum efficiencies of 20% or lower (Martin

& Koch, 2006). If one can instead place inefficient components upstream of the speci-

men being imaged, the inefficiencies increase the overall imaging time. However, they

do not lead to the specimen receiving a higher radiation dose. This is the case of

scanning microscopes, which require spatially coherent illumination in order to obtain

diffraction-limited resolution from the optic (Jacobsen et al., 1991; Jacobsen, 2020).

Scanning and full-field imaging make different demands on instrument stability.

Because full-field imaging in absorption or Zernike phase contrast can be done with

incoherent sources and with all pixels collected in parallel, it can be done with much

shorter exposure times so that there is less sensitivity to position drift between spec-

imen and optic. In x-ray nanoholography, drift can lead to blurring of the image but

one does not have to quickly move beam positions as in scanned beam methods.

With scanned beam methods, drift during data collection can lead to distortions in

the image or resolution degradation in the case of ptychography; however, one can

correct for these scanned beam position errors in ptychography (Guizar-Sicairos &

Fienup, 2008; Zhang et al., 2013; Dwivedi et al., 2018).

2. Scaling of previous experiments

Scaling from previous experiments can add confidence to the estimates made in the

main text.

Two examples of high-throughput 2D ptychographic imaging of the integrated cir-

cuit layer within a silicon wafer provide insights on what can be achieved. Using

6.2 keV X rays at the Swiss Light Source to image in a 10 µm thick silicon wafer,

an effective imaging rate of Tp = 40 µs for a resolution of ∆p = 41 nm was achieved

(Guizar-Sicairos et al., 2014). At the Advanced Photon Source at Argonne, 8.8 keV
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X rays were used to image in a 130 µm thick silicon wafer (Deng et al., 2019); a

double-multilayer monochromator was used to obtain a spatially coherent flux of about

1× 1010 photons/s in 1% spectral bandpass, with an imaging rate of Tp = 11 µs for a

resolution of ∆p = 10 nm. This latter example involved scanning the focus of a Fres-

nel zone plate with 50 nm outermost zone width (and thus 49 nm theoretical probe

FWHM size, given that the central 33% of the optic was obstructed with a central

stop; see Fig. 4.32 of (Jacobsen, 2020)) at a linear speed of 150 µm/s while collecting

3000 diffraction patterns per second. Both of these examples scale reasonably well to

the pixel time estimates shown in Fig. 7 of the main text when one accounts for sample

thickness, spatial resolution, photon energy used, and coherent flux values obtainable

in the future as shown in Fig. 6. In the latter case, the main limitation was the max-

imum “frame rate” of the detector used. While there are direct-detection x-ray pixel

array detectors that use per-pixel analog charge storage to record up to 352 images at

a burst frame rate of 4.5 MHz, the sustained frame rate of these detectors is limited

to 16 kHz, or a sustained per-frame time of 63 µs (Allahgholi et al., 2019).

The Swiss Light Source example (Guizar-Sicairos et al., 2014) can be scaled to larger

sample imaging as follows:

• This example was done at the present-day Swiss Light Source with a brightness

about 600 times lower than that expected from the APS-U (the APS-U bright-

ness was used in calculating the spatially coherent flux shown in Fig. 6 of the

main text; it should be noted that the Swiss Light Source is also planning an

upgrade to a diffraction-limited storage ring). Thus one can divide the exposure

time by 600 to account for this.

• The experiment at the C-SAXS beamline used a double-silicon-crystal monochro-

mator with about 0.01% spectral bandpass. In fact, one can carry out ptychog-

raphy using a much broader bandwidth (Enders et al., 2014; Yao et al., 2019),
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such as the full 1% bandwidth available from typical undulator sources. Thus

one can divide the exposure time by 100 for (1% bandpass/0.01% bandpass).

• The experiment at the C-SAXS beamline used a Fresnel zone plate focusing optic

with 100 nm thick gold zones with a theoretical diffraction efficiency (Kirz, 1974)

of about 0.6%, whereas broad bandpass multilayer-coated Kirkpatrick-Baez mir-

ror optics have demonstrated 45% focusing efficiency (da Silva et al., 2017).

These optics were used in connection with a multilayer-coated monochromator

with 4% bandpass so as to limit exposure to other photon energies, so it is rea-

sonable to assume a combined efficiency for monochromator and optics of about

20%. Thus one can divide the exposure time by (20%/0.6%), or a factor of 33.

• The C-SAXS experiment was done at 41 nm spatial resolution, whereas the pixel

time calculation of Fig. 7 of the main text was for 20 nm resolution. We use the

scaling of n̄pixel ∝ t−2f of Eq. 2 of the main text to translate the results to higher

spatial resolution. Thus one must multiply the exposure time by (41/20)2 = 4.2.

This leads to an estimated per-pixel imaging time of 8.4 × 10−11 seconds using 6.2

keV photon energy. In fact, the pixel time calculation shown in Fig. 7 of the main text

suggests that the optimum photon energy to use for 10 µm thick silicon background

is 1.45 keV rather than 6.2 keV, so let us also consider the scaling of this result to

1.45 keV photon energy:

• From the data used in Fig. 6 of the main text, an ALS-U undulator is expected

to provide a coherent flux of 30.8×1014 photons/s at 1.45 keV, while an APS-U

undulator is expected to provide 4.45×1014 photons/s at 6.2 keV. Thus one can

divide the exposure time by (30.8/4.45)=6.9.

• From Eq. 2 of the main text, we see that the contrast scaling sc of the required

number of photons n̄pixel per pixel due to changes in image contrast when moving
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from λ1 to λ2 goes as

sc =

(
λ2
λ1

)2 |δf,1 − δb,1|2

|δf,2 − δb,2|2
=

(
E1

E2

)2 |δf,1 − δb,1|2

|δf,2 − δb,2|2

=

(
1.45 keV

6.2 keV

)2 |7.494× 10−4 − 1.995× 10−4|2

|4.255× 10−5 − 1.282× 10−5|2
= 18.7 (1)

where we have used tabulated values (Henke et al., 1993) for the refractive

index of copper and silicon at 1.45 keV versus 6.2 keV. Thus one can divide the

exposure time by 18.7.

• Also from Eq. 2 of the main text, we must correct for the increased absorption

in the 10 µm silicon background thickness when moving from λ1 to λ2. This

absorption scaling sa goes as

sa =
exp[µ2tb′]

exp[µ1tb′]
=

exp
[
(7.41 µm)−1 · (10 µm)

]
exp [(33.5 µm)−1 · (10 µm)]

= 2.9 (2)

using tabulated values (Henke et al., 1993) for the linear absorption coefficient

µ of silicon. Thus one must multiply the exposure time by 2.9 to account for the

absorption scaling sa.

Taken together, the scaling of this example to 14.5 keV photon energy leads to an

estimate of a per-pixel imaging time of 6.5 × 10−13 seconds, whereas the calculation

results shown in Fig. 7 of the main text give a result of 28.4 × 10−13 seconds for

the per-pixel imaging time. Given the nature of the estimates that the above scaling

factors involve, this discrepancy of a factor of 4.4 is not outlandish.

These examples indicate that significant advances in ptychography methods and

instrumentation will be required to scale x-ray nanoimaging up to macroscopic objects:

• One of the adjustable parameters in a ptychographic imaging experiment is the

ptychographic resolution gain

Gp =
d

δr
(3)

which is the ratio of the diameter d of the scanned coherent illumination spot

relative to the target spatial resolution δr (for simplicity, we assume a circular
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illumination spot, though in practice one might have an Airy illumination pat-

tern from a lens). In order to maximize the ptychographic imaging throughput,

small values of Gp are preferred (Jacobsen et al., 2017). With a smaller pty-

chographic gain Gp, one can relaxed the spectral bandwidth ∆λ/λ ≤ 2/Gp and

thus make better use of the full ∼ 1% bandwidth of the output of undulators at

diffraction-limited storage rings (Fig. 6 of the main text). The minimum number

of pixels Ndet,min required along one edge of the detector is

Ndet,min = 2Gp, (4)

while the exposure time per illumination spot Tp can be written as

Tp =
N0G

2
p(1− fd)2

I0
(5)

in order to achieve a per-pixel fluence of N0/δ
2
r . The expression of Eq. 5 involves

the ptychographic overlap fraction fd, which (in the case of uniform illumination

over a circular diameter d) is the distance over which the illumination spot

is moved relative to d, with values of fd . 0.5 preferred (Bunk et al., 2008;

Deng et al., 2015; Huang et al., 2017). (One can relax this 2D position overlap

requirement when using angular overlap in tomography experiments (Gürsoy,

2017), but it remains an open question whether this is still the case when one

also relaxes the Crowther criterion for the number of illumination angles as

discussed in Sec. 5.2 of the main text). Smaller values of ptychographic gain Gp

also decrease the dynamic range required by the detector (Jacobsen et al., 2017).

Thus the ideal detector for high throughput ptychography is one with a relatively

modest number of pixels Ndet,min (for example, 128×128 or 256×256 pixels) but

the highest possible frame rate, ideally approaching the inverse of the per-pixel

illumination time shown in Fig. 7 of the main text.

• A standard ptychographic dataset with a 2D diffraction pattern per 2D probe
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position provides information compartmentalized in 4 dimensions, so that it is

highly redundant for reconstructing a 2D complex exit wave from the speci-

men (Edo et al., 2013; da Silva & Menzel, 2015). One can therefore use sparse

sampling and regularizers in optimization-based image recovery approaches, as

discussed in Sec. 5.1 of the main text, to obtain successful ptychographic image

reconstructions with compressed data (Stevens et al., 2018b).

• The method originally employed for continuous-probe-motion ptychography was

a simple raster scan with a sawtooth position-versus-time scan in one direction,

and a discrete position step in the orthogonal transverse direction (Pelz et al.,

2014; Deng et al., 2015; Huang et al., 2015). However, other scanning approaches

have been developed, including spiral scans for reducing artifacts with reduced

probe overlap (Dierolf et al., 2010; Huang et al., 2014). Archimedean spiral

scans have been used for high-speed scanning in atomic force and scanning tun-

neling microscopy (Sang et al., 2016; Ziegler et al., 2017), and Hilbert “snake”

scans have been used in scanning transmission electron microscopy (Velazco

et al., 2020). Lissajous trajectories offer another approach to minimize sharp

accelerations in both orthogonal scanning directions (Sullivan et al., 2014). One

can also use specimen rotation as the fast axis for ptychography (Gürsoy, 2017).

Therefore, one can use some flexibility in choosing a scanning approach that

best exploits the capabilities, and avoids imposed limitations, of the scanning

stage and control system at hand.

• Because x-ray mirrors operate at grazing incidence, it is difficult to use methods

such as the resonant galvanometric mirror pairs of confocal light microscopy

(Wilke, 1983) to scan the illumination beam. Instead, one usually physically

scans either the specimen or the optic. If the optic is scanned, one risks trans-

lating the coherent illumination variations on the optic into variations on the
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complex illuminating probe. While one can account for probe variations in the

reconstruction (Thibault & Menzel, 2013), one can also avoid this by using rapid

optic scanning over small areas and slower specimen scanning over larger areas

(Deng et al., 2019). While rapid, precise scanning is technically challenging, the

challenges can be met if sufficient resources are brought to bear. This is most

starkly evident in the example of wafer scan systems for lithographic fabrication

of integrated circuits, where position accuracies at the nanometer level have been

obtained with scan velocities in the meter per second range, and accelerations

of tens of meters per second squared (Munnig Schmidt, 2012).

3. Smart scanning approaches

Local tomography 
sub-volume

Diffraction patterns Reconstruction
Contains desired 

feature?

x

Trained neural 
network classifier

Contains desired 
feature?

No

Yes

Annotated recon.

Training using local tomography data
Actual experiment on whole sample

Diffraction patterns

Adjusted dose map

High dose

Low dose

x
Normal
dose

Reduced
dose

Fig. 1. Schematic of a possible implementation of neural network-based adaptive
scanning for x-ray ptychotomography. By doing local ptychotomography on a sub-
volume of the sample (top figure), one can annotate features in the reconstructed
image and use them to train a neural network to identify diffraction patterns that
are obtained when the beam crosses a desired feature (such as a synapse in brain
tissue). When scanning the entire sample at low fluence (with beam positions shown
as blue dots in the lower figure), the trained neural network allows one to identify
regions which are likely to contain the desired features, and thus increase the x-ray
fluence used (shown as orange or red illumination spots in the lower figure) either
on this scan or on a subsequent scan at a slightly different angle in tomographic
data collection.
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As noted briefly in the main text, one can improve imaging speed using “smart

scanning” to collect more data from crucial regions (such as synapses in brain tissue),

and less data from homogeneous regions, or regions which do not contain information

that is as crucial for understanding the material under study.

For some types of specimens, unsupervised machine learning can be applied directly

on incrementally acquired data. This allows one to extract distinct features in the

sample, and thus guide scanning trajectories to regions of scientific interest. Tech-

niques such as Bayesian compressive sensing (Donoho, 2006; Candès et al., 2006; Ji

et al., 2008) have been successfully applied to image acquisition (Trampert et al.,

2018; Stevens et al., 2018a) and demonstrated real-time feedback during scanning.

In subsampled ptychography, one first learns a “dictionary” of textures present in

the specimen (Kreutz-Delgado et al., 2003; Aharon et al., 2006) and then uses this

dictionary to “inpaint” the most likely combination of textures into image regions

that have sparsely sampled actual data. This capability is particularly beneficial to

applications such as integrated circuits that have numerous copies of near-identical

structures. However, such approach will not work when an axon and dendrite are in

close proximity without having an actual synaptic connection (Kasthuri et al., 2015);

that is, one may have regions which look very similar in undersampled data so that the

act of inpainting could potentially lead to an unacceptably high number of false (con-

nection) positives in the reconstructed connectome. Therefore, a “smart” scanning is

desired which can adaptively improve its own scanning strategy.

One candidate to achieve the high-speed and dose-efficient scan is through the

so-called “active learning” approach (Cohn et al., 1996) which enables an adaptive

x-ray experimental design that optimally distributes resources (time, tolerable dose,

etc.) and acquires the “useful” data at minimum cost. Active learning frameworks

have shown successes in many fields (Tong, 2001) including microbiology (Hajmeer
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& Basheer, 2003), neurophysiology (Lewi et al., 2009), and manufacturing (Jones

et al., 2010). Their capability to automatically identify and classify sample features will

allow real-time informative feedback, and can be the key to studies of small features

in a large sample volume. Furthermore, an active learning approach can provide a

structured and amendable framework to incorporate a priori morphological knowledge

into the data acquisition protocol.

Another application is the detection of the cracks in battery materials, since these

cracks indicate degradation of the material leading to lower energy density and higher

product-life-cycle cost (Kamaya et al., 2011). Here one wishes to catch rare events

such as crack formation and propagation that occur over sub-second timescales, with

nanometer-scale detail yet with cracks that may extend to lengths of millimeters. Tra-

ditional full-specimen raster scanning schemes will miss the details of crack formation

during the charging process. Instead, intelligent scanning schemes that dynamically

guide data collection along the crack as it forms in operando experiments can allow

one to trace crack formation and evolution, hopefully leading to an understanding of

the underlying mechanisms and contributing to the development of improved battery

materials. In this context, initial random coarse scanning of a large region can first

provide a refined region of interest, and rapidly train a neural network to recognize

crack features in either direct (real-space) or indirect (e.g., ptychographic) imaging.

This can then guide fine scanning along the developing crack, with additional data

being used to further refine the learned model and possibly incorporate additional

evolving features.

Similarly, one could devise a different type of “smart” scanning to optimize the flu-

ence. For example, one can use local tomography to image a small volume at uniform

full fluence, and carry out a detailed analysis on that volume to identify the subregions

where full fluence is actually required for unambiguous feature detection. In the con-
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text of ptychography, one could only acquire the coherent diffraction patterns obtained

from illuminating the previously identified critical features, and use these data to train

a neural network to recognize the regions where higher fluence is required to recognize

more structural detail. When scanning the entire specimen, one could use the 2D scan

taken at one rotational angle to inform the scanning hardware at the next rotation

angle on how to modulate the scanning speed to adjust the fluence (see Fig. 1). In a

rotation-as-fast-axis ptychographic approach (Gürsoy, 2017), one could use fast mod-

ulation of the transverse probe position during rotation to achieve a similar result.

In the case of connectomics, this could let one go from lower fluence data telling one

where synapses might be, to acquire sufficient signal for high confidence in knowing

that a specific region is (or is not) a synapse.

A challenge that this “smart” scanning scheme may face is that when a thick speci-

men is imaged, each 2D diffraction pattern encodes the projected information through

the sample, and the feature overlay along the beam axis, as mentioned at the beginning

of Sec. 3 of the main text, may hinder the neural network from determining exactly

whether the diffraction pattern contains the desired feature. A possible workaround

is to use a stack of diffraction patterns collected from multiple (preferably largely

spaced) viewing angles in both training and prediction, so that the multi-angle input

can hopefully disambiguate the projection overlay. In practice, this solution would be

more compatible with the rotation-as-fast-axis ptychographic approach if multi-angle

diffraction patterns are acquired in an interleaving fashion (Kaestner et al., 2011): for

each lateral probe position, one could first collect a few diffraction patterns covering

the full range of rotation, and pass the data to the neural network. This could allow

the neural network to predict whether the ring-shaped region contains the desired fea-

ture, and if not, subsequent diffraction patterns at interleaving angles can be acquired

with lower fluence.
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4. To stain, or not to stain: examples in the literature

As noted in the main text, tissue staining methods offer improved contrast but reduced

penetration. Several en bloc staining protocols have been developed for osmium and

uranium staining of membranes deep into brain tissue (Mikula & Denk, 2015; Hua

et al., 2015; Genoud et al., 2018), as required for serial sectioning and serial blockface

imaging in electron microscopy connectomics. These protocols typically require signifi-

cant time to allow for stain infiltration, and they can show variability in staining depth

and staining density (Fera et al., 2020). Both challenges increase with specimen size.

An alternative approach is to use immunohistochemical (IHC) methods engineered

to target different receptors of the neurons and extraneuronal tissue based on anti-

body binding selectivity. Their recent use for macroscopic x-ray imaging demonstrates

protocol scalability to the entire mouse brain (Depannemaecker et al., 2019; Massimi

et al., 2019), though ultrastructural integrity has yet to be evaluated in detail. Molec-

ular tags developed for correlative cellular imaging (Clarke & Royle, 2019; Victor

et al., 2020) might also prove useful for staining brain specimens. Alternatively, using

genetic labeling approaches, specific heavy or exogenous elements can also be trans-

ported to target location via adeno-associated virus following in vivo injection (Zhang

et al., 2019).

From an imaging perspective, the staining and labeling methods described above

modify the spatially-resolved absorptive (β) and phase-shifting (δ) parts of the x-ray

refractive index simultaneously (Eq. 1 in the main text), so as to increase contrast.

Unfortunately, the chemical modification of stains and fixatives can lead to alteration

of the specimen morphology at the subcellular level (O’Toole et al., 1993). In light

of this, we may ask the question whether absorption or phase contrast of unstained

brain specimens alone is sufficient for delineating structural boundaries for connec-

tomics. There are already examples of x-ray imaging of unstained brain tissue where
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certain neuronal features can be identified, including examples with paraffin embed-

ding (Khimchenko et al., 2016; Hieber et al., 2016; Ren et al., 2016; Töpperwien

et al., 2017; Khimchenko et al., 2018).

Because the radiation dose necessarily imparted to a specimen increases significantly

with improvements in spatial resolution (Sayre et al., 1977; Howells et al., 2009), cryo-

genic specimen preparation and imaging conditions are preferred for preserving mor-

phology (O’Toole et al., 1993) and chemistry (Perrin et al., 2015; Jin et al., 2017).

Present-day cryogenic sample preparation aims mainly at the smaller specimen sizes

amenable to electron microscopy. High-pressure freezing has been developed mainly

for sub-millimeter-size specimens (Moor, 1987) but approaches based on gas pressur-

ization followed by cooling (Kim et al., 2005) are being explored for cryogenic sample

preparation of larger specimens. Cryogenic imaging has used for studies of chemi-

cally fixed but unstained brain tissue (Shahmoradian et al., 2017), and also paraffin-

embedded, stained brain tissue (Kuan et al., 2020). The latter study compared phase

contrast x-ray imaging against serial section electron microscopy, and found similar

contrast from metal staining, implying a similar level of biological interpretability

between two modalities. Additional GABAergic neuronal nuclei labeling with perox-

idase APEX2 (Lam et al., 2014) provides cell type information. The multi-contrast

imaging strategy they demonstrated (Kuan et al., 2020) can guide the design of x-ray

imaging experiments to maximize their structural information. Another approach is

to use the natural distribution of metals in the brain to add functional information in

unstained specimens, whether through atomic spectrometry (McAllum & Hare, 2019)

or x-ray induced x-ray fluorescence (Bourassa & Miller, 2012), which can also be

combined with the staining and labeling methods described above.

To image function-induced changes in dense neuroanatomy, one can rapidly freeze

a specimen after sensory stimulus. One can then look for synaptic junctions that were
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undergoing neurotransmitter release, as evidenced by fusing vesicles containing neu-

rotransmitters captured “in action” at the release sites of the neuronal axon. This has

been done decades ago using transmission electron microscopy, where electrical stimu-

lation and slam freezing was followed either by freeze fracture (Heuser et al., 1979), or

freeze-substitution and uranyl acetate staining followed by serial sectioning (Heuser

& Reese, 1981). A more modern approach (Watanabe et al., 2013; Kavalali & Jor-

gensen, 2014; Watanabe et al., 2014) has used cultured neurons infected with lentivirus

expressing a rhodopsin derivative that can be triggered using blue light, followed

by rapid high-pressure freezing, freeze-substitution, uranyl acetate staining, plastic

embedding, and sectioning (Watanabe et al., 2013). When combined with genetic tar-

geting, in principle this type of approach could lead to a very sparse set of target

synapses to search for using the adaptive scanning approaches discussed in section S3.
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