
J. Appl. Cryst. (2021). 54,  doi:10.1107/S1600576720016532        Supporting information 

Volume 54 (2021) 

Supporting information for article: 

Validation of the Crystallography Open Database using CIF 
Antanas Vaitkus, Andrius Merkys and Saulius Gražulis 



Validation of the Crystallography Open Database 
using CIF

Supplementary material

Antanas Vaitkus1*, Andrius Merkys1 & Saulius Gražulis1,2

1Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center,

Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
2Faculty of Mathematics and Informatics, Vilnius University, Naugarduko g. 24, LT-03225,

Vilnius, Lithuania
*E-mail: antanas.vaitkus90@gmail.com

November 10, 2020

Contents

1 Installation instructions for the cod-tools software package 2
1.1 Subversion repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 GitHub repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Debian package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Usage examples of the cif validate program 3

3 Usage examples of programs from the cod-tools software package 6
3.1 utf8-to-cif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Usage example 1: conversion of Unicode characters to CIF 1.1 special codes . . . . . . . . . . . 6
3.2 cif fix values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Usage example 1: correction of misspelt enumeration values . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Usage example 2: correction of temperature values . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Usage example 3: correction of density values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 cif correct tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Usage example 1: correction of misspelt data items using a replacement list file . . . . . . . . . 10

4 The cod validation database 11
4.1 RestfulDB based web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 SQL query examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Distribution of distinct validation issues per each COD entry 14

1

mailto:antanas.vaitkus90@gmail.com


1 Installation instructions for the cod-tools software package

1.1 Subversion repository

The cod-tools software package is maintained using a Subversion repository. The package can be installed on a
Debian/Ubuntu OS by executing the following Bash commands:

1. Check out the v3.0.0 tag release of the cod-tools software package:

svn checkout svn://www.crystallography.net/cod-tools/tags/v3.0.0 cod-tools

2. Go to the check out directory:

cd cod-tools

3. Install software packages required to run the programs. Dependency installers for some operating systems are
provided under dependencies/ and can be executed as follows:

sh dependencies/Ubuntu-20.04/install.sh

4. Build and install the cod-tools package to the location specified using the PREFIX variable. Note, that the
specified location must be writable to the user executing the commands:

make all

make check

make install PREFIX=/usr/local/install/cod-tools/cod-tools-3.0.0

5. Update environment variables to make installed programs and libraries automatically discoverable by the
system. Note, that the COD TOOLS PREFIX variable should be set to the location that was specified during the
package installation in step 4 (i.e. /usr/local/install/cod-tools/cod-tools-3.0.0):

COD_TOOLS_PREFIX=/usr/local/install/cod-tools/cod-tools-3.0.0

export PATH=${COD_TOOLS_PREFIX}/bin:${PATH}

export PERL5LIB=${COD_TOOLS_PREFIX}/lib/perl5/:${PERL5LIB}

export PYTHONPATH=${COD_TOOLS_PREFIX}/usr/local/lib/python${PY3VERSION}/dist-packages:${PYTHONPATH}

Where ${PY3VERSION} is the Python3 version in the X.Y format (i.e. “3.7”). On Debian/Ubuntu systems this
version can be found by executing the following command:

py3versions --default --version

Commands from step 5 can also be copied to the ~/.bashrc file to automatically execute them each time a
new Bash shell is started.

1.2 GitHub repository

The cod-tools Subversion repository is also mirrored on GitHub. Installation instructions for the Git repository
are mostly identical to those provided for the Subversion repository in section 1.1:

1. Clone the cod-tools Git repository:

git clone https://github.com/cod-developers/cod-tools.git cod-tools

2. Go to the working directory:

cd cod-tools

3. Checkout the v3.0.0 tag release:

git checkout tags/v3.0.0

4. Repeat steps 3-5 from section 1.1.

2



1.3 Debian package

The cod-tools software package can also be installed from the official Debian 10 and Ubuntu 20.04 repositories:

sudo apt-get install cod-tools

Note, that since the cod-tools packages available in Debian 10 and Ubuntu 20.04 were based on an older
cod-tools version, they do not contain all of the DDLm tools described in the article. Future releases of the package
should contain all of the described programs.

2 Usage examples of the cif validate program

The cif validate program provides an interface of a Unix filter. As such, the input data can be provided as a
standard input stream (stdin) as well as a list of CIF files. Several examples of running the cif validate program
inside a Bash shell under the Ubuntu 20.04 GNU/Linux system are provided below. All of the given examples assume
the directory tree structure provided in Fig. S1:

• Validate files 1000000.cif, 1501972.cif and 2000000.cif against the CIF CORE DDL1 dictionary:

./cod-tools/bin/cif_validate \

--ddl1-dictionaries ./dictionaries/ddl1/IUCr/cif_core.dic \

./data/cod/cif/1000000.cif \

./data/cod/cif/1501972.cif \

./data/cod/cif/2000000.cif

• Validate file 2000000.cif against the CIF CORE, CIF PD and CIF COD DDL1 dictionaries:

./cod-tools/bin/cif_validate \

--ddl1-add-dictionary ./dictionaries/ddl1/IUCr/cif_core.dic \

--ddl1-add-dictionary ./dictionaries/ddl1/IUCr/cif_pd.dic \

--ddl1-add-dictionary ./dictionaries/ddl1/COD/cif_cod.dic

./data/cod/cif/2000000.cif

It should be noted that the order in which the DDL1 dictionaries are provided is important since it deter-
mines the dictionary merge order. The first DDL1 dictionary serves as the base while the remaining ones are
merged sequentially using the OVERLAY mode as specified in the International Tables for Crystallography

Volume G [1].

• Validate a CIF file read from the standard input stream against the CIF CORE DDL1 dictionary:

cat ./data/cod/cif/1501972.cif | \

./cod-tools/bin/cif_validate \

--ddl1-dictionaries ./dictionaries/ddl1/IUCr/cif_core.dic

• Validate all CIF files from the ./data/cod/cif/ directory against the CIF CORE, CIF PD and CIF COD DDL1
dictionaries:

find ./data/cod/cif/ -name '*.cif' | \

xargs cif_validate \

--ddl1-add-dictionary ./dictionaries/ddl1/IUCr/cif_core.dic \

--ddl1-add-dictionary ./dictionaries/ddl1/IUCr/cif_pd.dic \

--ddl1-add-dictionary ./dictionaries/ddl1/COD/cif_cod.dic

3



• Validate the 1501972.cif file against the CIF CORE and CIF COD DDLm dictionaries. In this particular case
the DDLm dictionary import path, that is required to correctly resolve internal dictionary import statements,
is provided using the --add-ddlm-import-path command line option:

./cod-tools/bin/cif_validate \

--ddlm-add-dictionary ./dictionaries/ddlm/IUCr/cif_core.dic \

--ddlm-add-dictionary ./dictionaries/ddlm/COD/cif_cod.dic \

--add-ddlm-import-path './dictionaries/ddlm/IUCr' \

./data/cod/cif/1501972.cif

• Validate the 1501972.cif file against the CIF CORE and CIF COD DDLm dictionaries. In this particular case
the DDLm dictionary import path, that is required to correctly resolve internal dictionary import statements,
is provided using the COD TOOLS DDLM IMPORT PATH environment variable:

COD_TOOLS_DDLM_IMPORT_PATH=./dictionaries/ddlm/IUCr:${COD_TOOLS_DDLM_IMPORT_PATH}

export COD_TOOLS_DDLM_IMPORT_PATH

./cod-tools/bin/cif_validate \

--ddlm-add-dictionary ./dictionaries/ddlm/IUCr/cif_core.dic \

--ddlm-add-dictionary ./dictionaries/ddlm/COD/cif_cod.dic \

./data/cod/cif/1501972.cif

• Validate the 2000000.cif file against the CIF CORE and CIF CORE RESTRAINTS DDL1 dictionaries and the
CIF COD DDLm dictionary:

./cod-tools/bin/cif_validate \

--ddl1-add-dictionary ./dictionaries/ddl1/IUCr/cif_core.dic \

--ddl1-add-dictionary ./dictionaries/ddl1/IUCr/cif_core_restraints.dic \

--ddlm-add-dictionary ./dictionaries/ddlm/COD/cif_cod.dic \

--add-ddlm-import-path './dictionaries/ddlm/IUCr' \

./data/cod/cif/2000000.cif

It should be noted, that the validator does not merge DDL1 and DDLm dictionaries into a single virtual
dictionary and instead validates against DDL1 and DDLm dictionaries using two separate validation workflows.

• Validate the 1000000.cif file against the CIF CORE DDLm dictionary. In this particular case the CIF CORE

dictionary is provided using the generic --add-dictionary option that does not explicitly specify the dictionary
DDL type:

./cod-tools/bin/cif_validate \

--add-dictionary ./dictionaries/ddlm/IUCr/cif_core.dic \

./data/cod/cif/1000000.cif

The use of the --add-dictionary option is discouraged and should only be used when the dictionary DDL
type is not known in advance.

The cif validate program outputs validation issues to the standard output stream (stdout) as single-line
human-readable warning messages that follow the same formal syntax as the warning messages issued by the
COD::CIF::Parser [2], i.e.:

> ./cod-tools/bin/cif_validate: ./data/cod/cif/1501972.cif data_1501972: NOTE, data item

'_diffrn_source_current' value '40_mA' violates type constraints -- the value should be a numerically

interpretable string, e.g. '42', '42.00', '4200E-2'.

> ./cod-tools/bin/cif_validate: ./data/cod/cif/1501972.cif data_1501972: NOTE, data item

'_exptl_crystal_density_diffrn' value '1.66627(10)' is not permitted to contain the appended standard

uncertainty value '(10)'.

Please note, that the program output in the provided example has been slightly modified for readability by
marking the beginning of each new line with the greater-than (“>”) symbol.

4



.

cod-tools

...

data

cod

cif

1000000.cif

1501972.cif

2000000.cif

2000002.cif

4000001.cif

dictionaries

ddl1

COD

cif cod.dic

IUCr

cif core.dic

cif core restraints.dic

cif pd.dic

ddlm

COD

cif cod.dic

IUCr

cif core.dic

templ attr.cif

templ enum.cif

Figure S1: The directory layout of files that are used in the provided cif validate program usage examples.
The cod-tools directory contains the local installation of the cod-tools package. The contents of the cod-tools

directory were replaced with an ellipsis (“...”).

5



3 Usage examples of programs from the cod-tools software package

All programs described in this section provide an interface of a Unix filter. That is, the input CIF files are read from
the provided locations in the file system or the standard input stream (stdin) and the modified CIF files are output
to the standard output stream (stdout). Errors, warnings and notes produced while handling the input files are
output to the standard error stream (stderr) and follow the same formal syntax as the warning messages produced
by the COD::CIF::Parser [2].

Each program description is accompanied by one or more usage examples which consist of the following sections:

• Input CIF file (input.cif). Contains the contents of the input CIF file that is used in the example.

• Syntax errors. Contains syntax error messages that are generated by the COD::CIF::Parserwhile processing
the input CIF file.

• Validation messages. Contains validation messages that are generated by the cif validate program while
validating the input CIF file against the DDL1 CIF CORE dictionary.

• Explanation. Contains a more detailed description of the syntax or semantic issues in the input CIF file.

• Command. Contains a Bash shell command that can be used under the Ubuntu 20.04 GNU/Linux system to
correct the input CIF file.

• stderr . Contains errors, warnings and notes that are output to stderr while running the command;

• stdout . Contains the corrected input CIF file that is output to stdout while running the command.

Text in the Syntax errors, Validation messages and stderr sections is folded for readability. The start of
each new line in these sections is marked with the “>” symbol.

3.1 utf8-to-cif

The utf8-to-cif program converts UTF-8 text to a form that is compatible with the CIF 1.1 data format. Unicode
characters that fall outside of the CIF 1.1 character set are preferably expressed as CIF 1.1 special codes with
hexadecimal numeric character references being used as a fallback mechanism. Since the use of numeric character
references is not a universally accepted approach when dealing with CIF 1.1 files, CIF handling programs that were
not developed by the COD team are unlikely to place any special meaning on these references. The program can
be used as the initial step in the CIF processing pipeline to avoid syntax errors that may be caused by improperly
expressed UTF-8 characters.

3.1.1 Usage example 1: conversion of Unicode characters to CIF 1.1 special codes

• Input CIF file (input.cif):

#\#CIF_1.1

data_charset_test

loop_

_publ_author_name

'Röntgen, Wilhelm Conrad'

• Syntax errors:

> ./cod-tools/bin/cif_validate: input.cif(5,1) data_charset_test: ERROR, incorrect CIF syntax:

> 'Röntgen, Wilhelm Conrad'

> ^

• Explanation:

The character set of CIF 1.1 files is limited to a subset of the ASCII character set. In this particular case, the
author name contains an accented character (“ö”) that needs to be replaced with a special code in order to
properly record it in the CIF 1.1 file.

• Command:

./cod-tools/bin/utf8-to-cif input.cif

6



• stdout :

#\#CIF_1.1

data_charset_test

loop_

_publ_author_name

'R\"ontgen, Wilhelm Conrad'

3.2 cif fix values

The cif fix values program resolves various simple semantic issues in CIF files. The program can regularise
the values of various temperature data items (i.e. the chemical melting point), correct values of
the exptl crystal density meas data item, correct misspelt values by consulting a built-in table or an external
replacement list file as well as carry out various other minor corrections. Upon successful termination, a summary
of corrections that were applied to the input CIF file is output to the stderr as well as recorded in the output CIF
file using the cod depositor comments data item.

3.2.1 Usage example 1: correction of misspelt enumeration values

• Input CIF file (input.cif):

data_enumeration_test

_exptl_absorpt_correction_type 'MULTI SCAN'

• Validation messages:

> ./cod-tools/bin/cif_validate: test.cif data_enumeration_test:

NOTE, data item '_exptl_absorpt_correction_type' value 'MULTI SCAN' must be one of

the enumeration values ['analytical', 'cylinder', 'empirical', 'gaussian', 'integration',

'multi-scan', 'none', 'numerical', 'psi-scan', 'refdelf', 'sphere'].

• Explanation:

Enumeration values are case sensitive and must appear exactly as they are defined in the dictionary. In this
particular case the enumeration value is written in upper case instead of lower case and does not contain a
hyphen (i.e. “MULTI SCAN” instead of “multi-scan”).

• Command:

./cod-tools/bin/cif_fix_values input.cif --fix-enums

• stderr :

> ./cod-tools/bin/cif_fix_values: input.cif data_enumeration_test:

NOTE, data item '_exptl_absorpt_correction_type' value 'MULTI SCAN' was changed to 'multi-scan'

in accordance with the built-in table derived from the CIF Core dictionary named 'cif_core.dic'

version 2.4.5 last updated on 2014-11-21.

• stdout :

data_enumeration_test

_exptl_absorpt_correction_type multi-scan

_cod_depositor_comments

;

The following automatic conversions were performed:

data item '_exptl_absorpt_correction_type' value 'MULTI SCAN' was

changed to 'multi-scan' in accordance with the built-in table derived

from the CIF Core dictionary named 'cif_core.dic' version 2.4.5 last

updated on 2014-11-21.

Automatic conversion script

Id: cif_fix_values 8533 2020-09-29 07:54:47Z antanas

;

7



3.2.2 Usage example 2: correction of temperature values

• Input CIF file (input.cif):

data_melting_point_test

_chemical_melting_point '145 C'

• Validation messages:

> ./cod-tools/bin/cif_validate: test.cif data_melting_point_test:

NOTE, data item '_chemical_melting_point' value '145 C' violates type constraints --

the value should be a numerically interpretable string, e.g. '42', '42.00', '4200E-2'.

• Explanation:

The definition of the chemical melting point data item in the CIF CORE dictionary states that the item
should only have numeric values. The same definition also specifies that the recorded temperature should be
expressed in kelvins. In this particular case the data item value contains a superfluous unit designator (“C”)
and is also incorrectly expressed in degrees Celsius instead of kelvins.

• Command:

./cod-tools/bin/cif_fix_values input.cif --fix-temperature

• stderr :

> ./cod-tools/bin/cif_fix_values: input.cif data_melting_point_test:

NOTE, data item '_chemical_melting_point' value '145 C' was changed to '418.15' --

it was converted from degrees Celsius (C) to kelvins (K).

• stdout :

data_melting_point_test

_chemical_melting_point 418.15

_cod_depositor_comments

;

The following automatic conversions were performed:

data item '_chemical_melting_point' value '145 C' was changed to

'418.15' -- it was converted from degrees Celsius (C) to kelvins (K).

Automatic conversion script

Id: cif_fix_values 8533 2020-09-29 07:54:47Z antanas

;

3.2.3 Usage example 3: correction of density values

• Input CIF file (input.cif):

data_crystal_density_test

_exptl_crystal_density_meas None

• Validation messages:

> ./cod-tools/bin/cif_validate: test.cif data_crystal_density_test:

NOTE, data item '_exptl_crystal_density_meas' value 'None' violates type constraints --

the value should be a numerically interpretable string, e.g. '42', '42.00', '4200E-2'.

• Explanation:

The definition of the exptl crystal density meas data item in the CIF CORE dictionary states that the
item should only have numeric values. The same definition also specifies that the recorded density should be
expressed in megagrams per cubic metre. In this particular case the data item value is a text string that implies
that the density was not measured at all (“None”).

• Command:

./cod-tools/bin/cif_fix_values input.cif --fix-density-meas

8



• stderr :

> ./cod-tools/bin/cif_fix_values: input.cif data_crystal_density_test:

NOTE, data item '_exptl_crystal_density_meas' value 'None' was changed to '?' --

the value is perceived as not measured.

• stdout :

data_crystal_density_test

_exptl_crystal_density_meas ?

_cod_depositor_comments

;

The following automatic conversions were performed:

data item '_exptl_crystal_density_meas' value 'None' was changed to

'?' -- the value is perceived as not measured.

Automatic conversion script

Id: cif_fix_values 8533 2020-09-29 07:54:47Z antanas

;

3.3 cif correct tags

The cif correct tags program corrects misspelt data names in CIF files. The program can restore the proper data
name by applying several ad-hoc rules and by consulting a built-in table or an external replacement list file. Upon
successful termination, a summary of corrections that were applied to the input CIF file is output to the stderr as
well as recorded in the output CIF file using the cod depositor comments data item.

The replacement list file maps common misspelt data name variants to the proper data names that they should
be replaced by. The file consists of three types of lines:

• Replacement pair lines each of which contains a misspelt data name and a properly spelt data name that
the former should be replaced by. Data names must be separated by one or more whitespace symbols. Trailing
and leading whitespace symbols are silently ignored.

• Comment lines that start with the hash symbol (“#”) and contain human-readable explanatory text. Com-
ment lines are silently ignored.

• Whitespace lines that consist of 0 or more whitespace symbols. Whitespace lines are silently ignored.

An excerpt from the replacement list file used in the COD data maintenance operations is provided below:

#

# _incorrect_tag _correct_tag

#

# _geom_angle_atom_site_label_1

_geom_angle_atom_site_label_a _geom_angle_atom_site_label_1

_geom_angle_site_label_1 _geom_angle_atom_site_label_1

_geom_angle_atom_site_symbol_1 _geom_angle_atom_site_label_1

# _symmetry_Int_Tables

_symmetry_intl_tables_no _symmetry_Int_Tables_number

_symmetry_inl_tables_number _symmetry_Int_Tables_number

_symmetrry_inl_tables_number _symmetry_Int_Tables_number

_symmetry_intl_tables_number _symmetry_Int_Tables_number

The full replacement list file can be retrieved from the cod-tools Subversion repository (see section 1.1) by
executing the following command:

svn export svn://www.crystallography.net/cod-tools/tags/v3.0.0/data/replacement-values/replacement_tags.lst

9



3.3.1 Usage example 1: correction of misspelt data items using a replacement list file

• Input CIF file (input.cif):

data_misspelt_data_name_test

__space_group_crystal_system orthorhombic

_space_group_int_number 42

_space_group_h-m 'F m m 2'

• Replacement list file (replacement.lst):

# Comment lines start with the '#' symbol

_space_group_int_number _space_group_IT_number

_space_group_h-m _space_group_name_H-M_alt

• Validation messages:

> ./cod-tools/bin/cif_validate: test.cif data_misspelt_data_name_test:

NOTE, definition of the '__space_group_crystal_system' data item was not found in

the provided dictionaries.

> ./cod-tools/bin/cif_validate: test.cif data_misspelt_data_name_test:

NOTE, definition of the '_space_group_h-m' data item was not found in

the provided dictionaries.

> ./cod-tools/bin/cif_validate: test.cif data_misspelt_data_name_test:

NOTE, definition of the '_space_group_int_number' data item was not found in

the provided dictionaries.

• Explanation:

It is highly recommended that all data items used in a CIF file are properly formally defined in DDL dictionaries.
While data items from dictionaries that are private, difficult to obtain or non-existent at all (i.e. shelx *,
olex2 *, jana *) are routinely encountered in modern CIF files, it is nevertheless recommended to inspect
all unrecognised data names for spelling mistakes. In this particular case one of the reported data names
( space group crystal system) contains a simple spelling mistake that can be corrected by applying ad-hoc
rules and consulting a built-in table while the remaining two contain more serious spelling mistakes, correction
of which require the use of the replacement.lst replacement list file.

• Command:

./cod-tools/bin/cif_correct_tags input.cif --replacement-list replacement.lst

• stderr :

> ./cod-tools/bin/cif_correct_tags: input.cif data_misspelt_data_name_test:

NOTE, data name '__space_group_crystal_system' was replaced with '_space_group_crystal_system'.

> ./cod-tools/bin/cif_correct_tags: input.cif data_misspelt_data_name_test:

NOTE, data name '_space_group_int_number' was replaced with '_space_group_IT_number'

as specified in the replacement file 'replacement.lst'.

> ./cod-tools/bin/cif_correct_tags: input.cif data_misspelt_data_name_test:

NOTE, data name '_space_group_h-m' was replaced with '_space_group_name_H-M_alt'

as specified in the replacement file 'replacement.lst'.

10



• stdout :

data_misspelt_data_name_test

_space_group_crystal_system orthorhombic

_space_group_IT_number 42

_space_group_name_H-M_alt 'F m m 2'

_cod_depositor_comments

;

The following automatic conversions were performed:

data name '__space_group_crystal_system' was replaced with

'_space_group_crystal_system'.

data name '_space_group_int_number' was replaced with

'_space_group_IT_number' as specified in the replacement file

'replacement.lst'.

data name '_space_group_h-m' was replaced with

'_space_group_name_H-M_alt' as specified in the replacement file

'replacement.lst'.

Automatic conversion script

Id: cif_correct_tags 8533 2020-09-29 07:54:47Z antanas

;

4 The cod validation database

COD entry validation issues are stored on the sql.crystallography.net server using MariaDB DBMS that is
compatible with most modern MySQL clients. The database can be accessed using the passwordless cod reader

user that has SELECT privileges on all tables in the database. For example, running the following command under
Ubuntu 20.04 GNU/Linux system should return a listing of all of the available database tables:

mysql -u cod_reader -h sql.crystallography.net cod_validation -e 'SHOW TABLES;'

Version 1.0.0 of the cod validation database schema contains 3 tables (see Fig. S2). The version table
identifies the currently used database schema, entry validation state table mostly contains information used
to identify COD entries that need revalidation while the validation issue table contains the validation issue
descriptions. For most applications the validation issue table should be sufficient.

4.1 RestfulDB based web interface

The RestfulDB software provides a web GUI as well as a RESTful API for interaction with the cod validation

SQL database. Notable RestfulDB endpoints:

• https://sql.crystallography.net/db/cod_validation – the cod validation database endpoint that pro-
vides the list of all available database tables;

• https://sql.crystallography.net/db/cod_validation/validation_issue – the validation issue table
endpoint that provides access to the table data in various formats such as HTML, CSV, JSON, ODT, etc. The
table endpoint also provides additional data processing functionality such as data sorting and filtering.

4.2 SQL query examples

SQL queries provided in this section are executed while logged into the cod validation database as the cod reader

user. This can be achieved by running the following command:

mysql -u cod_reader -h sql.crystallography.net cod_validation

Examples of several useful SQL queries:

1. Select the number of COD entries that have associated validation issues:

SELECT COUNT(DISTINCT `cod_id`)

FROM `validation_issue`;

11

https://sql.crystallography.net/db/cod_validation
https://sql.crystallography.net/db/cod_validation/validation_issue


2. Select the number of COD entries that have associated DDL1 validation issues:

SELECT COUNT(DISTINCT `cod_id`)

FROM `validation_issue`

WHERE `validation_type` = 'DDL1';

3. Select the number of COD entries that have associated DDLm validation issues:

SELECT COUNT(DISTINCT `cod_id`)

FROM `validation_issue`

WHERE `validation_type` = 'DDLm';

4. Select all DDL1 validation messages associated with COD entry 1000000:

SELECT `message`

FROM `validation_issue`

WHERE `cod_id` = '1000000'

AND `validation_type` = 'DDL1';

5. Select 10 most common DDLm validation messages:

SELECT `message`, COUNT(*)

FROM `validation_issue`

WHERE `validation_type` = 'DDLm'

GROUP BY `message`

ORDER BY COUNT(*) DESC

LIMIT 10;

6. Select 5 most common validation messages that report incorrect exptl absorpt correction type data item
values:

SELECT `message`, COUNT(*)

FROM `validation_issue`

WHERE `message` LIKE

"% '_exptl_absorpt_correction_type' value '%' must be%"

GROUP BY `message`

ORDER BY COUNT(*)

DESC LIMIT 5;

7. Select the number of COD entries that have associated DDLm validation issues that do not involve top level
list containers or missing category keys:

SELECT COUNT(DISTINCT `cod_id`)

FROM `validation_issue`

WHERE `validation_type` = 'DDLm'

AND `message` NOT LIKE

"%top level list container%"

AND `message` NOT LIKE

"missing category key%";

8. Select the number of COD entries that have associated DDL1 validation issues that do not involve missing
looped list keys or missing mandatory data items:

SELECT COUNT(DISTINCT `cod_id`)

FROM `validation_issue`

WHERE `validation_type` = 'DDL1'

AND `message` NOT LIKE

"missing looped list reference%"

AND `message` NOT LIKE

"%mandatory%";

12



-- -----------------------------------------------------

-- Schema cod_validation

-- -----------------------------------------------------

-- -----------------------------------------------------

-- Table `version`

-- -----------------------------------------------------

CREATE TABLE IF NOT EXISTS `version` (

`id` INT(11) UNSIGNED NOT NULL AUTO_INCREMENT

COMMENT 'Artificial primary key of the table',

`number` CHAR(10) CHARACTER SET 'ascii' NOT NULL

COMMENT 'Version of the database schema',

`schema_url` VARCHAR(255) NULL DEFAULT NULL

COMMENT 'URL of the database schema',

PRIMARY KEY (`id`),

UNIQUE INDEX `timestamp_UNIQUE` (`timestamp` ASC),

UNIQUE INDEX `number_UNIQUE` (`number` ASC))

DEFAULT CHARACTER SET = utf8mb4

COMMENT = 'Database schema version';

-- -----------------------------------------------------

-- Table `entry_validation_state`

-- -----------------------------------------------------

CREATE TABLE IF NOT EXISTS `entry_validation_state` (

`id` INT UNSIGNED NOT NULL AUTO_INCREMENT

COMMENT 'Artificial primary key of the table',

`cod_id` MEDIUMINT(7) UNSIGNED NOT NULL

COMMENT 'COD ID of the validated entry',

`entry_svn_revision` INT UNSIGNED NOT NULL

COMMENT 'SVN revision of the validated COD entry',

`validation_setup_version` VARCHAR(32) CHARACTER SET 'ascii' NOT NULL

COMMENT 'Version number of the entire validation setup',

`validation_timestamp` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

COMMENT 'Timestamp of the most recent entry validation',

`is_revalidation_required` TINYINT(1) UNSIGNED NOT NULL

COMMENT 'Boolean value denoting if the entry should be revalidated',

UNIQUE INDEX (`cod_id` ASC),

PRIMARY KEY (`id`))

DEFAULT CHARACTER SET = utf8mb4

COMMENT = 'Validation state of each COD entry';

-- -----------------------------------------------------

-- Table `validation_issue`

-- -----------------------------------------------------

CREATE TABLE IF NOT EXISTS `validation_issue` (

`id` INT UNSIGNED NOT NULL AUTO_INCREMENT

COMMENT 'Artificial primary key of the table',

`cod_id` MEDIUMINT(7) UNSIGNED NOT NULL

COMMENT 'COD ID of the validated entry',

`program_name` VARCHAR(255) NOT NULL

COMMENT 'Name of the program that generated the message',

`validation_type` ENUM('DDL1', 'DDLm')

CHARACTER SET 'ascii' NOT NULL

COMMENT 'General validation type of the issue',

`issue_severity` ENUM('NOTE', 'WARNING', 'ERROR')

CHARACTER SET 'ascii' NULL DEFAULT NULL

COMMENT 'Severity level of the issue',

`message` VARCHAR(1024) NOT NULL

COMMENT 'Message describing the issue',

PRIMARY KEY (`id`))

DEFAULT CHARACTER SET = utf8mb4

COMMENT = 'Issues generated by the COD CIF validation software';

Figure S2: The complete cod validation database schema version 1.0.0.

13



5 Distribution of distinct validation issues per each COD entry

The distributions of distinct DDL1 and DDLm validation issues per each COD entry from COD revision 249495 are
provided in Fig. S3. In this analysis a distinct validation issue is defined as a validation issue that has a unique
combination of validation issue type and the affected data items. For example, an entry that has 12 non-numeric
atom site.occupancy data item values would be considered as having 1 distinct validation issue while an entry with
2 non-numeric atom site.occupancy data item values, 4 out-of-range atom site.occupancy data item values and
5 non-numeric atom site.fract x data item values would be considered as having 3 distinct validation issues.

0 1 2 3 4 5 6 ≥ 7

Distribution of all collected validation issues

Issue count per entry

E
n

tr
y
 c

o
u

n
t

0
5

0
0

0
0

1
5

0
0

0
0

2
5

0
0

0
0

3
5

0
0

0
0

4
5

0
0

0
0

DDL1

DDLm

0 1 2 3 4 5 6 ≥ 7

Distribution of selected validation issues

Issue count per entry

E
n

tr
y
 c

o
u

n
t

0
5

0
0

0
0

1
5

0
0

0
0

2
5

0
0

0
0

3
5

0
0

0
0

4
5

0
0

0
0

DDL1

DDLm

Figure S3: The distributions of distinct validation issues per each entry from COD revision 249495. The bar chart on
the left was generated from all collected validation issues while the bar chart on the right was generated after removing
validation issues involving unrecognised data item names, missing category keys and complex data structures. The
excluded validation issues are extremely useful in detecting more obscure data anomalies, however, they do not
generally prevent the affected files from being used for most applications.

References

[1] S. R. Hall and B. McMahon, eds., International Tables for Crystallography, vol. G. International Union of
Crystallography, 2006.

[2] A. Merkys, A. Vaitkus, J. Butkus, M. Okulič-Kazarinas, V. Kairys, and S. Gražulis, “COD::CIF::Parser: an
error-correcting CIF parser for the Perl language”, Journal of Applied Crystallography, vol. 49, no. 1, pp. 292–
301, 2016.

14


	Installation instructions for the cod-tools software package
	Subversion repository
	GitHub repository
	Debian package

	Usage examples of the cif_validate program
	Usage examples of programs from the cod-tools software package
	utf8-to-cif
	Usage example 1: conversion of Unicode characters to CIF 1.1 special codes

	cif_fix_values
	Usage example 1: correction of misspelt enumeration values
	Usage example 2: correction of temperature values
	Usage example 3: correction of density values

	cif_correct_tags
	Usage example 1: correction of misspelt data items using a replacement list file


	The cod_validation database
	RestfulDB based web interface
	SQL query examples

	Distribution of distinct validation issues per each COD entry

