

Volume 54 (2021)
Supporting information for article:

Identification of grown-in dislocations in protein crystals by digital X-ray topography

Ryo Suzuki, Marina Abe, Kenichi Kojima and Masaru Tachibana

Figure S1 The $(+n,-m)$ setting for $\operatorname{Si}(111)$ and $\operatorname{HEWL}(110)$ as first and second crystals. (a) DuMond diagram when the crystal planes are parallel, giving no reflection from the HEWL crystal. (b) DuMond diagram when the HEWL crystal is rotated by $10.41314^{\circ}\left(\theta_{\mathrm{B} 1}\right)$ and $10.42503^{\circ}\left(\theta_{\mathrm{B} 2}\right)$ corresponding to the reflection with $1.19932 \AA\left(\lambda_{1}\right)$ and $1.20068 \AA\left(\lambda_{2}\right)$, respectively. The reflected beam shows up where the Bragg condition is satisfied locally. In order to obtain the reflection of the whole crystal, the rotation with the angle of $1.18897 \times 10^{-20}(\Delta \theta)$ of the HEWL crystal is necessary even if the crystal is perfect.

Figure S2 Mapping of (a) rocking curve width (full-width at half maximum), and (b) intensityangular distribution taken with $\overline{4} 40$ reflection. The region without dislocations have a slightly broaden in (a). Both mappings are not good agreement with the dislocation image. The scale bar represents $500 \mu \mathrm{~m}$.

Figure S3 Schematics of crystal morphology corresponding to the X-ray topographic images of Figure 4. The solid lines and broken lines are the appeared and disappeared dislocations, respectively. The axes with red, green and blue colour are a, b and c axes, respectively. All images are prepared with VESTA software (Momma \& Izumi, 2011).

Figure S4 Typical optical micrographs of the grown HEWL crystals from a seed crystal. (b) is taken by changing the angle of the reflecting mirror of (a). The seed crystal and the sector boundaries are clearly observed in (b).

